Merge branch 'ml-explore:main' into adding-reporting-to-wandb

This commit is contained in:
Gökdeniz Gülmez
2025-03-12 14:35:39 +01:00
committed by GitHub
17 changed files with 561 additions and 139 deletions

View File

@@ -43,6 +43,11 @@ CONFIG_DEFAULTS = {
"model": "mlx_model",
"train": False,
"fine_tune_type": "lora",
"optimizer": "adam",
"optimizer_config": {
"adam": {},
"adamw": {},
},
"data": "data/",
"seed": 0,
"num_layers": 16,
@@ -96,14 +101,19 @@ def build_parser():
choices=["lora", "dora", "full"],
help="Type of fine-tuning to perform: lora, dora, or full.",
)
parser.add_argument(
"--optimizer",
type=str,
choices=["adam", "adamw"],
default=None,
help="Optimizer to use for training: adam or adamw",
)
parser.add_argument(
"--mask-prompt",
action="store_true",
help="Mask the prompt in the loss when training",
default=None,
)
parser.add_argument(
"--num-layers",
type=int,
@@ -236,11 +246,21 @@ def train_model(
)
model.train()
opt = optim.Adam(
learning_rate=(
build_schedule(args.lr_schedule) if args.lr_schedule else args.learning_rate
)
)
# Initialize the selected optimizer
lr = build_schedule(args.lr_schedule) if args.lr_schedule else args.learning_rate
optimizer_name = args.optimizer.lower()
optimizer_config = args.optimizer_config.get(optimizer_name, {})
if optimizer_name == "adam":
opt_class = optim.Adam
elif optimizer_name == "adamw":
opt_class = optim.AdamW
else:
raise ValueError(f"Unsupported optimizer: {optimizer_name}")
opt = opt_class(learning_rate=lr, **optimizer_config)
# Train model
train(