mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 17:31:18 +08:00
Merge branch 'ml-explore:main' into adding-reporting-to-wandb
This commit is contained in:
commit
0e28fdb345
@ -14,4 +14,4 @@ MLX Examples was developed with contributions from the following individuals:
|
|||||||
- Markus Enzweiler: Added the `cvae` examples.
|
- Markus Enzweiler: Added the `cvae` examples.
|
||||||
- Prince Canuma: Helped add support for `Starcoder2` models.
|
- Prince Canuma: Helped add support for `Starcoder2` models.
|
||||||
- Shiyu Li: Added the `Segment Anything Model`.
|
- Shiyu Li: Added the `Segment Anything Model`.
|
||||||
- Gökdeniz Gülmez: Added support for `MiniCPM`, `Helium`, `Mamba version 1` and support for `full-fine-tuning`.
|
- Gökdeniz Gülmez: Added support for `MiniCPM`, `Helium`, `Mamba version 1`, `OLMoE` archtectures and support for `full-fine-tuning`.
|
@ -48,3 +48,17 @@ Note this was run on an M1 Macbook Pro with 16GB RAM.
|
|||||||
|
|
||||||
At the time of writing, `mlx` doesn't have built-in learning rate schedules.
|
At the time of writing, `mlx` doesn't have built-in learning rate schedules.
|
||||||
We intend to update this example once these features are added.
|
We intend to update this example once these features are added.
|
||||||
|
|
||||||
|
## Distributed training
|
||||||
|
|
||||||
|
The example also supports distributed data parallel training. You can launch a
|
||||||
|
distributed training as follows:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
$ cat >hostfile.json
|
||||||
|
[
|
||||||
|
{"ssh": "host-to-ssh-to", "ips": ["ip-to-bind-to"]},
|
||||||
|
{"ssh": "host-to-ssh-to", "ips": ["ip-to-bind-to"]}
|
||||||
|
]
|
||||||
|
$ mlx.launch --verbose --hostfile hostfile.json main.py --batch 256 --epochs 5 --arch resnet20
|
||||||
|
```
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
|
import mlx.core as mx
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from mlx.data.datasets import load_cifar10
|
from mlx.data.datasets import load_cifar10
|
||||||
|
|
||||||
@ -12,8 +13,11 @@ def get_cifar10(batch_size, root=None):
|
|||||||
x = x.astype("float32") / 255.0
|
x = x.astype("float32") / 255.0
|
||||||
return (x - mean) / std
|
return (x - mean) / std
|
||||||
|
|
||||||
|
group = mx.distributed.init()
|
||||||
|
|
||||||
tr_iter = (
|
tr_iter = (
|
||||||
tr.shuffle()
|
tr.shuffle()
|
||||||
|
.partition_if(group.size() > 1, group.size(), group.rank())
|
||||||
.to_stream()
|
.to_stream()
|
||||||
.image_random_h_flip("image", prob=0.5)
|
.image_random_h_flip("image", prob=0.5)
|
||||||
.pad("image", 0, 4, 4, 0.0)
|
.pad("image", 0, 4, 4, 0.0)
|
||||||
@ -25,6 +29,11 @@ def get_cifar10(batch_size, root=None):
|
|||||||
)
|
)
|
||||||
|
|
||||||
test = load_cifar10(root=root, train=False)
|
test = load_cifar10(root=root, train=False)
|
||||||
test_iter = test.to_stream().key_transform("image", normalize).batch(batch_size)
|
test_iter = (
|
||||||
|
test.to_stream()
|
||||||
|
.partition_if(group.size() > 1, group.size(), group.rank())
|
||||||
|
.key_transform("image", normalize)
|
||||||
|
.batch(batch_size)
|
||||||
|
)
|
||||||
|
|
||||||
return tr_iter, test_iter
|
return tr_iter, test_iter
|
||||||
|
@ -23,6 +23,13 @@ parser.add_argument("--seed", type=int, default=0, help="random seed")
|
|||||||
parser.add_argument("--cpu", action="store_true", help="use cpu only")
|
parser.add_argument("--cpu", action="store_true", help="use cpu only")
|
||||||
|
|
||||||
|
|
||||||
|
def print_zero(group, *args, **kwargs):
|
||||||
|
if group.rank() != 0:
|
||||||
|
return
|
||||||
|
flush = kwargs.pop("flush", True)
|
||||||
|
print(*args, **kwargs, flush=flush)
|
||||||
|
|
||||||
|
|
||||||
def eval_fn(model, inp, tgt):
|
def eval_fn(model, inp, tgt):
|
||||||
return mx.mean(mx.argmax(model(inp), axis=1) == tgt)
|
return mx.mean(mx.argmax(model(inp), axis=1) == tgt)
|
||||||
|
|
||||||
@ -34,9 +41,20 @@ def train_epoch(model, train_iter, optimizer, epoch):
|
|||||||
acc = mx.mean(mx.argmax(output, axis=1) == tgt)
|
acc = mx.mean(mx.argmax(output, axis=1) == tgt)
|
||||||
return loss, acc
|
return loss, acc
|
||||||
|
|
||||||
losses = []
|
world = mx.distributed.init()
|
||||||
accs = []
|
losses = 0
|
||||||
samples_per_sec = []
|
accuracies = 0
|
||||||
|
samples_per_sec = 0
|
||||||
|
count = 0
|
||||||
|
|
||||||
|
def average_stats(stats, count):
|
||||||
|
if world.size() == 1:
|
||||||
|
return [s / count for s in stats]
|
||||||
|
|
||||||
|
with mx.stream(mx.cpu):
|
||||||
|
stats = mx.distributed.all_sum(mx.array(stats))
|
||||||
|
count = mx.distributed.all_sum(count)
|
||||||
|
return (stats / count).tolist()
|
||||||
|
|
||||||
state = [model.state, optimizer.state]
|
state = [model.state, optimizer.state]
|
||||||
|
|
||||||
@ -44,6 +62,7 @@ def train_epoch(model, train_iter, optimizer, epoch):
|
|||||||
def step(inp, tgt):
|
def step(inp, tgt):
|
||||||
train_step_fn = nn.value_and_grad(model, train_step)
|
train_step_fn = nn.value_and_grad(model, train_step)
|
||||||
(loss, acc), grads = train_step_fn(model, inp, tgt)
|
(loss, acc), grads = train_step_fn(model, inp, tgt)
|
||||||
|
grads = nn.utils.average_gradients(grads)
|
||||||
optimizer.update(model, grads)
|
optimizer.update(model, grads)
|
||||||
return loss, acc
|
return loss, acc
|
||||||
|
|
||||||
@ -52,69 +71,79 @@ def train_epoch(model, train_iter, optimizer, epoch):
|
|||||||
y = mx.array(batch["label"])
|
y = mx.array(batch["label"])
|
||||||
tic = time.perf_counter()
|
tic = time.perf_counter()
|
||||||
loss, acc = step(x, y)
|
loss, acc = step(x, y)
|
||||||
mx.eval(state)
|
mx.eval(loss, acc, state)
|
||||||
toc = time.perf_counter()
|
toc = time.perf_counter()
|
||||||
loss = loss.item()
|
losses += loss.item()
|
||||||
acc = acc.item()
|
accuracies += acc.item()
|
||||||
losses.append(loss)
|
samples_per_sec += x.shape[0] / (toc - tic)
|
||||||
accs.append(acc)
|
count += 1
|
||||||
throughput = x.shape[0] / (toc - tic)
|
|
||||||
samples_per_sec.append(throughput)
|
|
||||||
if batch_counter % 10 == 0:
|
if batch_counter % 10 == 0:
|
||||||
print(
|
l, a, s = average_stats(
|
||||||
|
[losses, accuracies, world.size() * samples_per_sec],
|
||||||
|
count,
|
||||||
|
)
|
||||||
|
print_zero(
|
||||||
|
world,
|
||||||
" | ".join(
|
" | ".join(
|
||||||
(
|
(
|
||||||
f"Epoch {epoch:02d} [{batch_counter:03d}]",
|
f"Epoch {epoch:02d} [{batch_counter:03d}]",
|
||||||
f"Train loss {loss:.3f}",
|
f"Train loss {l:.3f}",
|
||||||
f"Train acc {acc:.3f}",
|
f"Train acc {a:.3f}",
|
||||||
f"Throughput: {throughput:.2f} images/second",
|
f"Throughput: {s:.2f} images/second",
|
||||||
)
|
)
|
||||||
)
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
mean_tr_loss = mx.mean(mx.array(losses))
|
return average_stats([losses, accuracies, world.size() * samples_per_sec], count)
|
||||||
mean_tr_acc = mx.mean(mx.array(accs))
|
|
||||||
samples_per_sec = mx.mean(mx.array(samples_per_sec))
|
|
||||||
return mean_tr_loss, mean_tr_acc, samples_per_sec
|
|
||||||
|
|
||||||
|
|
||||||
def test_epoch(model, test_iter, epoch):
|
def test_epoch(model, test_iter, epoch):
|
||||||
accs = []
|
accuracies = 0
|
||||||
|
count = 0
|
||||||
for batch_counter, batch in enumerate(test_iter):
|
for batch_counter, batch in enumerate(test_iter):
|
||||||
x = mx.array(batch["image"])
|
x = mx.array(batch["image"])
|
||||||
y = mx.array(batch["label"])
|
y = mx.array(batch["label"])
|
||||||
acc = eval_fn(model, x, y)
|
acc = eval_fn(model, x, y)
|
||||||
acc_value = acc.item()
|
accuracies += acc.item()
|
||||||
accs.append(acc_value)
|
count += 1
|
||||||
mean_acc = mx.mean(mx.array(accs))
|
|
||||||
return mean_acc
|
with mx.stream(mx.cpu):
|
||||||
|
accuracies = mx.distributed.all_sum(accuracies)
|
||||||
|
count = mx.distributed.all_sum(count)
|
||||||
|
return (accuracies / count).item()
|
||||||
|
|
||||||
|
|
||||||
def main(args):
|
def main(args):
|
||||||
mx.random.seed(args.seed)
|
mx.random.seed(args.seed)
|
||||||
|
|
||||||
|
# Initialize the distributed group and report the nodes that showed up
|
||||||
|
world = mx.distributed.init()
|
||||||
|
if world.size() > 1:
|
||||||
|
print(f"Starting rank {world.rank()} of {world.size()}", flush=True)
|
||||||
|
|
||||||
model = getattr(resnet, args.arch)()
|
model = getattr(resnet, args.arch)()
|
||||||
|
|
||||||
print("Number of params: {:0.04f} M".format(model.num_params() / 1e6))
|
print_zero(world, f"Number of params: {model.num_params() / 1e6:0.04f} M")
|
||||||
|
|
||||||
optimizer = optim.Adam(learning_rate=args.lr)
|
optimizer = optim.Adam(learning_rate=args.lr)
|
||||||
|
|
||||||
train_data, test_data = get_cifar10(args.batch_size)
|
train_data, test_data = get_cifar10(args.batch_size)
|
||||||
for epoch in range(args.epochs):
|
for epoch in range(args.epochs):
|
||||||
tr_loss, tr_acc, throughput = train_epoch(model, train_data, optimizer, epoch)
|
tr_loss, tr_acc, throughput = train_epoch(model, train_data, optimizer, epoch)
|
||||||
print(
|
print_zero(
|
||||||
|
world,
|
||||||
" | ".join(
|
" | ".join(
|
||||||
(
|
(
|
||||||
f"Epoch: {epoch}",
|
f"Epoch: {epoch}",
|
||||||
f"avg. Train loss {tr_loss.item():.3f}",
|
f"avg. Train loss {tr_loss:.3f}",
|
||||||
f"avg. Train acc {tr_acc.item():.3f}",
|
f"avg. Train acc {tr_acc:.3f}",
|
||||||
f"Throughput: {throughput.item():.2f} images/sec",
|
f"Throughput: {throughput:.2f} images/sec",
|
||||||
)
|
)
|
||||||
)
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
test_acc = test_epoch(model, test_data, epoch)
|
test_acc = test_epoch(model, test_data, epoch)
|
||||||
print(f"Epoch: {epoch} | Test acc {test_acc.item():.3f}")
|
print_zero(world, f"Epoch: {epoch} | Test acc {test_acc:.3f}")
|
||||||
|
|
||||||
train_data.reset()
|
train_data.reset()
|
||||||
test_data.reset()
|
test_data.reset()
|
||||||
|
@ -11,7 +11,7 @@ from .utils import load, stream_generate
|
|||||||
|
|
||||||
DEFAULT_TEMP = 0.0
|
DEFAULT_TEMP = 0.0
|
||||||
DEFAULT_TOP_P = 1.0
|
DEFAULT_TOP_P = 1.0
|
||||||
DEFAULT_SEED = 0
|
DEFAULT_SEED = None
|
||||||
DEFAULT_MAX_TOKENS = 256
|
DEFAULT_MAX_TOKENS = 256
|
||||||
DEFAULT_MODEL = "mlx-community/Llama-3.2-3B-Instruct-4bit"
|
DEFAULT_MODEL = "mlx-community/Llama-3.2-3B-Instruct-4bit"
|
||||||
|
|
||||||
@ -36,7 +36,12 @@ def setup_arg_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--top-p", type=float, default=DEFAULT_TOP_P, help="Sampling top-p"
|
"--top-p", type=float, default=DEFAULT_TOP_P, help="Sampling top-p"
|
||||||
)
|
)
|
||||||
parser.add_argument("--seed", type=int, default=DEFAULT_SEED, help="PRNG seed")
|
parser.add_argument(
|
||||||
|
"--seed",
|
||||||
|
type=int,
|
||||||
|
default=DEFAULT_SEED,
|
||||||
|
help="PRNG seed",
|
||||||
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-kv-size",
|
"--max-kv-size",
|
||||||
type=int,
|
type=int,
|
||||||
@ -57,7 +62,8 @@ def main():
|
|||||||
parser = setup_arg_parser()
|
parser = setup_arg_parser()
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
mx.random.seed(args.seed)
|
if args.seed is not None:
|
||||||
|
mx.random.seed(args.seed)
|
||||||
|
|
||||||
model, tokenizer = load(
|
model, tokenizer = load(
|
||||||
args.model,
|
args.model,
|
||||||
|
@ -1,27 +1,23 @@
|
|||||||
# Copyright © 2023-2024 Apple Inc.
|
# Copyright © 2023-2024 Apple Inc.
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
from enum import Enum
|
|
||||||
|
|
||||||
from .utils import convert, mixed_2_6, mixed_3_6
|
from . import utils
|
||||||
|
from .utils import convert
|
||||||
|
|
||||||
|
QUANT_RECIPES = [
|
||||||
class MixedQuants(Enum):
|
"mixed_2_6",
|
||||||
mixed_3_6 = "mixed_3_6"
|
"mixed_3_6",
|
||||||
mixed_2_6 = "mixed_2_6"
|
]
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def recipe_names(cls):
|
|
||||||
return [member.name for member in cls]
|
|
||||||
|
|
||||||
|
|
||||||
def quant_args(arg):
|
def quant_args(arg):
|
||||||
try:
|
if arg not in QUANT_RECIPES:
|
||||||
return MixedQuants[arg].value
|
|
||||||
except KeyError:
|
|
||||||
raise argparse.ArgumentTypeError(
|
raise argparse.ArgumentTypeError(
|
||||||
f"Invalid q-recipe {arg!r}. Choose from: {MixedQuants.recipe_names()}"
|
f"Invalid q-recipe {arg!r}. Choose from: {QUANT_RECIPES}"
|
||||||
)
|
)
|
||||||
|
else:
|
||||||
|
return getattr(utils, arg)
|
||||||
|
|
||||||
|
|
||||||
def configure_parser() -> argparse.ArgumentParser:
|
def configure_parser() -> argparse.ArgumentParser:
|
||||||
@ -50,7 +46,7 @@ def configure_parser() -> argparse.ArgumentParser:
|
|||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--quant-predicate",
|
"--quant-predicate",
|
||||||
help=f"Mixed-bit quantization recipe. Choices: {MixedQuants.recipe_names()}",
|
help=f"Mixed-bit quantization recipe. Choices: {QUANT_RECIPES}",
|
||||||
type=quant_args,
|
type=quant_args,
|
||||||
required=False,
|
required=False,
|
||||||
)
|
)
|
||||||
|
@ -7,6 +7,15 @@ train: true
|
|||||||
# The fine-tuning method: "lora", "dora", or "full".
|
# The fine-tuning method: "lora", "dora", or "full".
|
||||||
fine_tune_type: lora
|
fine_tune_type: lora
|
||||||
|
|
||||||
|
# The Optimizer with its possible inputs
|
||||||
|
optimizer: adamw
|
||||||
|
# optimizer_config:
|
||||||
|
# adamw:
|
||||||
|
# betas: [0.9, 0.98]
|
||||||
|
# eps: 1e-6
|
||||||
|
# weight_decay: 0.05
|
||||||
|
# bias_correction: true
|
||||||
|
|
||||||
# Directory with {train, valid, test}.jsonl files
|
# Directory with {train, valid, test}.jsonl files
|
||||||
data: "/path/to/training/data"
|
data: "/path/to/training/data"
|
||||||
|
|
||||||
|
73
llms/mlx_lm/examples/tool_use.py
Normal file
73
llms/mlx_lm/examples/tool_use.py
Normal file
@ -0,0 +1,73 @@
|
|||||||
|
# Copyright © 2025 Apple Inc.
|
||||||
|
|
||||||
|
import json
|
||||||
|
|
||||||
|
from mlx_lm import generate, load
|
||||||
|
from mlx_lm.models.cache import make_prompt_cache
|
||||||
|
|
||||||
|
# Specify the checkpoint
|
||||||
|
checkpoint = "mlx-community/Qwen2.5-32B-Instruct-4bit"
|
||||||
|
|
||||||
|
# Load the corresponding model and tokenizer
|
||||||
|
model, tokenizer = load(path_or_hf_repo=checkpoint)
|
||||||
|
|
||||||
|
|
||||||
|
# An example tool, make sure to include a docstring and type hints
|
||||||
|
def multiply(a: float, b: float):
|
||||||
|
"""
|
||||||
|
A function that multiplies two numbers
|
||||||
|
|
||||||
|
Args:
|
||||||
|
a: The first number to multiply
|
||||||
|
b: The second number to multiply
|
||||||
|
"""
|
||||||
|
return a * b
|
||||||
|
|
||||||
|
|
||||||
|
tools = {"multiply": multiply}
|
||||||
|
|
||||||
|
# Specify the prompt and conversation history
|
||||||
|
prompt = "Multiply 12234585 and 48838483920."
|
||||||
|
messages = [{"role": "user", "content": prompt}]
|
||||||
|
|
||||||
|
prompt = tokenizer.apply_chat_template(
|
||||||
|
messages, add_generation_prompt=True, tools=list(tools.values())
|
||||||
|
)
|
||||||
|
|
||||||
|
prompt_cache = make_prompt_cache(model)
|
||||||
|
|
||||||
|
# Generate the initial tool call:
|
||||||
|
response = generate(
|
||||||
|
model=model,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
prompt=prompt,
|
||||||
|
max_tokens=2048,
|
||||||
|
verbose=True,
|
||||||
|
prompt_cache=prompt_cache,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Parse the tool call:
|
||||||
|
# (Note, the tool call format is model specific)
|
||||||
|
tool_open = "<tool_call>"
|
||||||
|
tool_close = "</tool_call>"
|
||||||
|
start_tool = response.find(tool_open) + len(tool_open)
|
||||||
|
end_tool = response.find(tool_close)
|
||||||
|
tool_call = json.loads(response[start_tool:end_tool].strip())
|
||||||
|
tool_result = tools[tool_call["name"]](**tool_call["arguments"])
|
||||||
|
|
||||||
|
# Put the tool result in the prompt
|
||||||
|
messages = [{"role": "tool", "name": tool_call["name"], "content": tool_result}]
|
||||||
|
prompt = tokenizer.apply_chat_template(
|
||||||
|
messages,
|
||||||
|
add_generation_prompt=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Generate the final response:
|
||||||
|
response = generate(
|
||||||
|
model=model,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
prompt=prompt,
|
||||||
|
max_tokens=2048,
|
||||||
|
verbose=True,
|
||||||
|
prompt_cache=prompt_cache,
|
||||||
|
)
|
@ -16,7 +16,7 @@ DEFAULT_TEMP = 0.0
|
|||||||
DEFAULT_TOP_P = 1.0
|
DEFAULT_TOP_P = 1.0
|
||||||
DEFAULT_MIN_P = 0.0
|
DEFAULT_MIN_P = 0.0
|
||||||
DEFAULT_MIN_TOKENS_TO_KEEP = 1
|
DEFAULT_MIN_TOKENS_TO_KEEP = 1
|
||||||
DEFAULT_SEED = 0
|
DEFAULT_SEED = None
|
||||||
DEFAULT_MODEL = "mlx-community/Llama-3.2-3B-Instruct-4bit"
|
DEFAULT_MODEL = "mlx-community/Llama-3.2-3B-Instruct-4bit"
|
||||||
DEFAULT_QUANTIZED_KV_START = 5000
|
DEFAULT_QUANTIZED_KV_START = 5000
|
||||||
|
|
||||||
@ -87,7 +87,12 @@ def setup_arg_parser():
|
|||||||
default=DEFAULT_MIN_TOKENS_TO_KEEP,
|
default=DEFAULT_MIN_TOKENS_TO_KEEP,
|
||||||
help="Minimum tokens to keep for min-p sampling.",
|
help="Minimum tokens to keep for min-p sampling.",
|
||||||
)
|
)
|
||||||
parser.add_argument("--seed", type=int, default=DEFAULT_SEED, help="PRNG seed")
|
parser.add_argument(
|
||||||
|
"--seed",
|
||||||
|
type=int,
|
||||||
|
default=DEFAULT_SEED,
|
||||||
|
help="PRNG seed",
|
||||||
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--ignore-chat-template",
|
"--ignore-chat-template",
|
||||||
action="store_true",
|
action="store_true",
|
||||||
@ -152,7 +157,7 @@ def setup_arg_parser():
|
|||||||
"--num-draft-tokens",
|
"--num-draft-tokens",
|
||||||
type=int,
|
type=int,
|
||||||
help="Number of tokens to draft when using speculative decoding.",
|
help="Number of tokens to draft when using speculative decoding.",
|
||||||
default=2,
|
default=3,
|
||||||
)
|
)
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
@ -160,7 +165,9 @@ def setup_arg_parser():
|
|||||||
def main():
|
def main():
|
||||||
parser = setup_arg_parser()
|
parser = setup_arg_parser()
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
mx.random.seed(args.seed)
|
|
||||||
|
if args.seed is not None:
|
||||||
|
mx.random.seed(args.seed)
|
||||||
|
|
||||||
# Load the prompt cache and metadata if a cache file is provided
|
# Load the prompt cache and metadata if a cache file is provided
|
||||||
using_cache = args.prompt_cache_file is not None
|
using_cache = args.prompt_cache_file is not None
|
||||||
|
@ -43,6 +43,11 @@ CONFIG_DEFAULTS = {
|
|||||||
"model": "mlx_model",
|
"model": "mlx_model",
|
||||||
"train": False,
|
"train": False,
|
||||||
"fine_tune_type": "lora",
|
"fine_tune_type": "lora",
|
||||||
|
"optimizer": "adam",
|
||||||
|
"optimizer_config": {
|
||||||
|
"adam": {},
|
||||||
|
"adamw": {},
|
||||||
|
},
|
||||||
"data": "data/",
|
"data": "data/",
|
||||||
"seed": 0,
|
"seed": 0,
|
||||||
"num_layers": 16,
|
"num_layers": 16,
|
||||||
@ -96,14 +101,19 @@ def build_parser():
|
|||||||
choices=["lora", "dora", "full"],
|
choices=["lora", "dora", "full"],
|
||||||
help="Type of fine-tuning to perform: lora, dora, or full.",
|
help="Type of fine-tuning to perform: lora, dora, or full.",
|
||||||
)
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--optimizer",
|
||||||
|
type=str,
|
||||||
|
choices=["adam", "adamw"],
|
||||||
|
default=None,
|
||||||
|
help="Optimizer to use for training: adam or adamw",
|
||||||
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--mask-prompt",
|
"--mask-prompt",
|
||||||
action="store_true",
|
action="store_true",
|
||||||
help="Mask the prompt in the loss when training",
|
help="Mask the prompt in the loss when training",
|
||||||
default=None,
|
default=None,
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--num-layers",
|
"--num-layers",
|
||||||
type=int,
|
type=int,
|
||||||
@ -236,11 +246,21 @@ def train_model(
|
|||||||
)
|
)
|
||||||
|
|
||||||
model.train()
|
model.train()
|
||||||
opt = optim.Adam(
|
|
||||||
learning_rate=(
|
# Initialize the selected optimizer
|
||||||
build_schedule(args.lr_schedule) if args.lr_schedule else args.learning_rate
|
lr = build_schedule(args.lr_schedule) if args.lr_schedule else args.learning_rate
|
||||||
)
|
|
||||||
)
|
optimizer_name = args.optimizer.lower()
|
||||||
|
optimizer_config = args.optimizer_config.get(optimizer_name, {})
|
||||||
|
|
||||||
|
if optimizer_name == "adam":
|
||||||
|
opt_class = optim.Adam
|
||||||
|
elif optimizer_name == "adamw":
|
||||||
|
opt_class = optim.AdamW
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported optimizer: {optimizer_name}")
|
||||||
|
|
||||||
|
opt = opt_class(learning_rate=lr, **optimizer_config)
|
||||||
|
|
||||||
# Train model
|
# Train model
|
||||||
train(
|
train(
|
||||||
|
@ -33,13 +33,13 @@ def create_causal_mask(
|
|||||||
linds = mx.arange(offset, offset + N) if offset else rinds
|
linds = mx.arange(offset, offset + N) if offset else rinds
|
||||||
linds = linds[:, None]
|
linds = linds[:, None]
|
||||||
rinds = rinds[None]
|
rinds = rinds[None]
|
||||||
mask = linds < rinds
|
mask = linds >= rinds
|
||||||
if window_size is not None:
|
if window_size is not None:
|
||||||
mask = mask | (linds > rinds + window_size)
|
mask = mask & (linds <= rinds + window_size)
|
||||||
if lengths is not None:
|
if lengths is not None:
|
||||||
lengths = lengths[:, None, None, None]
|
lengths = lengths[:, None, None, None]
|
||||||
mask = mask | (rinds >= lengths)
|
mask = mask & (rinds < lengths)
|
||||||
return mask * -1e9
|
return mask
|
||||||
|
|
||||||
|
|
||||||
def create_attention_mask(h: mx.array, cache: Optional[Any] = None):
|
def create_attention_mask(h: mx.array, cache: Optional[Any] = None):
|
||||||
@ -55,7 +55,6 @@ def create_attention_mask(h: mx.array, cache: Optional[Any] = None):
|
|||||||
else:
|
else:
|
||||||
offset = c.offset
|
offset = c.offset
|
||||||
mask = create_causal_mask(T, offset, window_size=window_size)
|
mask = create_causal_mask(T, offset, window_size=window_size)
|
||||||
mask = mask.astype(h.dtype)
|
|
||||||
else:
|
else:
|
||||||
mask = None
|
mask = None
|
||||||
return mask
|
return mask
|
||||||
|
@ -196,9 +196,12 @@ class Model(nn.Module):
|
|||||||
|
|
||||||
def sanitize(self, weights):
|
def sanitize(self, weights):
|
||||||
# Remove unused precomputed rotary freqs
|
# Remove unused precomputed rotary freqs
|
||||||
return {
|
weights = {
|
||||||
k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
|
k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
|
||||||
}
|
}
|
||||||
|
if self.args.tie_word_embeddings:
|
||||||
|
weights.pop("lm_head.weight", None)
|
||||||
|
return weights
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def layers(self):
|
def layers(self):
|
||||||
|
217
llms/mlx_lm/models/olmoe.py
Normal file
217
llms/mlx_lm/models/olmoe.py
Normal file
@ -0,0 +1,217 @@
|
|||||||
|
# Copyright © 2023-2024 Apple Inc.
|
||||||
|
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from typing import Any, Dict, Optional, Union
|
||||||
|
|
||||||
|
import mlx.core as mx
|
||||||
|
import mlx.nn as nn
|
||||||
|
|
||||||
|
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||||
|
from .rope_utils import initialize_rope
|
||||||
|
from .switch_layers import SwitchGLU
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class ModelArgs(BaseModelArgs):
|
||||||
|
model_type: str
|
||||||
|
hidden_size: int
|
||||||
|
num_hidden_layers: int
|
||||||
|
intermediate_size: int
|
||||||
|
num_attention_heads: int
|
||||||
|
rms_norm_eps: float
|
||||||
|
vocab_size: int
|
||||||
|
num_experts: int
|
||||||
|
num_experts_per_tok: int
|
||||||
|
norm_topk_prob: bool = False
|
||||||
|
head_dim: Optional[int] = None
|
||||||
|
max_position_embeddings: Optional[int] = None
|
||||||
|
num_key_value_heads: Optional[int] = None
|
||||||
|
attention_bias: bool = False
|
||||||
|
mlp_bias: bool = False
|
||||||
|
rope_theta: float = 10000
|
||||||
|
rope_traditional: bool = False
|
||||||
|
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
|
||||||
|
tie_word_embeddings: bool = True
|
||||||
|
|
||||||
|
def __post_init__(self):
|
||||||
|
if self.num_key_value_heads is None:
|
||||||
|
self.num_key_value_heads = self.num_attention_heads
|
||||||
|
|
||||||
|
|
||||||
|
class Attention(nn.Module):
|
||||||
|
def __init__(self, args: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
dim = args.hidden_size
|
||||||
|
self.n_heads = n_heads = args.num_attention_heads
|
||||||
|
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
||||||
|
|
||||||
|
self.head_dim = head_dim = args.head_dim or args.hidden_size // n_heads
|
||||||
|
|
||||||
|
self.scale = head_dim**-0.5
|
||||||
|
|
||||||
|
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=args.attention_bias)
|
||||||
|
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias)
|
||||||
|
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=args.attention_bias)
|
||||||
|
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=args.attention_bias)
|
||||||
|
|
||||||
|
self.rope = initialize_rope(
|
||||||
|
self.head_dim,
|
||||||
|
args.rope_theta,
|
||||||
|
args.rope_traditional,
|
||||||
|
args.rope_scaling,
|
||||||
|
args.max_position_embeddings,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.q_norm = nn.RMSNorm(n_heads * head_dim, args.rms_norm_eps)
|
||||||
|
self.k_norm = nn.RMSNorm(n_kv_heads * head_dim, args.rms_norm_eps)
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
x: mx.array,
|
||||||
|
mask: Optional[mx.array] = None,
|
||||||
|
cache: Optional[Any] = None,
|
||||||
|
) -> mx.array:
|
||||||
|
B, L, D = x.shape
|
||||||
|
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
||||||
|
queries = self.q_norm(queries)
|
||||||
|
keys = self.k_norm(keys)
|
||||||
|
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||||||
|
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||||
|
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||||
|
if cache is not None:
|
||||||
|
queries = self.rope(queries, offset=cache.offset)
|
||||||
|
keys = self.rope(keys, offset=cache.offset)
|
||||||
|
keys, values = cache.update_and_fetch(keys, values)
|
||||||
|
else:
|
||||||
|
queries = self.rope(queries)
|
||||||
|
keys = self.rope(keys)
|
||||||
|
output = scaled_dot_product_attention(
|
||||||
|
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||||
|
)
|
||||||
|
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||||
|
return self.o_proj(output)
|
||||||
|
|
||||||
|
|
||||||
|
class OlmoeSparseMoeBlock(nn.Module):
|
||||||
|
def __init__(self, args: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
self.num_experts = args.num_experts
|
||||||
|
self.top_k = args.num_experts_per_tok
|
||||||
|
self.norm_topk_prob = args.norm_topk_prob
|
||||||
|
|
||||||
|
self.gate = nn.Linear(args.hidden_size, self.num_experts, bias=False)
|
||||||
|
self.switch_mlp = SwitchGLU(
|
||||||
|
args.hidden_size,
|
||||||
|
args.intermediate_size,
|
||||||
|
self.num_experts,
|
||||||
|
bias=args.mlp_bias,
|
||||||
|
)
|
||||||
|
|
||||||
|
def __call__(self, x: mx.array) -> mx.array:
|
||||||
|
B, L, D = x.shape
|
||||||
|
x_flat = x.reshape(-1, D)
|
||||||
|
router_logits = self.gate(x_flat)
|
||||||
|
routing_weights = mx.softmax(router_logits, axis=1, precise=True)
|
||||||
|
k = self.top_k
|
||||||
|
indices = mx.stop_gradient(
|
||||||
|
mx.argpartition(-routing_weights, kth=k - 1, axis=-1)[..., :k]
|
||||||
|
)
|
||||||
|
scores = mx.take_along_axis(routing_weights, indices, axis=-1)
|
||||||
|
if self.norm_topk_prob:
|
||||||
|
scores = scores / scores.sum(axis=-1, keepdims=True)
|
||||||
|
y = self.switch_mlp(x_flat, indices)
|
||||||
|
y = (y * scores[..., None]).sum(axis=-2)
|
||||||
|
return y.reshape(B, L, D)
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerBlock(nn.Module):
|
||||||
|
def __init__(self, args: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
self.self_attn = Attention(args)
|
||||||
|
self.mlp = OlmoeSparseMoeBlock(args)
|
||||||
|
self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||||
|
self.post_attention_layernorm = nn.RMSNorm(
|
||||||
|
args.hidden_size, eps=args.rms_norm_eps
|
||||||
|
)
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
x: mx.array,
|
||||||
|
mask: Optional[mx.array] = None,
|
||||||
|
cache: Optional[Any] = None,
|
||||||
|
) -> mx.array:
|
||||||
|
x = x + self.self_attn(self.input_layernorm(x), mask, cache)
|
||||||
|
x = x + self.mlp(self.post_attention_layernorm(x))
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class OlmoeModel(nn.Module):
|
||||||
|
def __init__(self, args: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
self.args = args
|
||||||
|
self.vocab_size = args.vocab_size
|
||||||
|
self.num_hidden_layers = args.num_hidden_layers
|
||||||
|
assert self.vocab_size > 0
|
||||||
|
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
|
||||||
|
self.layers = [
|
||||||
|
TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
|
||||||
|
]
|
||||||
|
self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
inputs: mx.array,
|
||||||
|
cache=None,
|
||||||
|
mask=None,
|
||||||
|
):
|
||||||
|
h = self.embed_tokens(inputs)
|
||||||
|
if mask is None:
|
||||||
|
mask = create_attention_mask(h, cache)
|
||||||
|
if cache is None:
|
||||||
|
cache = [None] * len(self.layers)
|
||||||
|
for layer, c in zip(self.layers, cache):
|
||||||
|
h = layer(h, mask, cache=c)
|
||||||
|
return self.norm(h)
|
||||||
|
|
||||||
|
|
||||||
|
class Model(nn.Module):
|
||||||
|
def __init__(self, args: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
self.args = args
|
||||||
|
self.model_type = args.model_type
|
||||||
|
self.model = OlmoeModel(args)
|
||||||
|
if not args.tie_word_embeddings:
|
||||||
|
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
inputs: mx.array,
|
||||||
|
cache=None,
|
||||||
|
mask=None,
|
||||||
|
):
|
||||||
|
out = self.model(inputs, cache, mask)
|
||||||
|
if self.args.tie_word_embeddings:
|
||||||
|
out = self.model.embed_tokens.as_linear(out)
|
||||||
|
else:
|
||||||
|
out = self.lm_head(out)
|
||||||
|
return out
|
||||||
|
|
||||||
|
def sanitize(self, weights):
|
||||||
|
if "model.layers.0.mlp.experts.0.up_proj.weight" not in weights:
|
||||||
|
return weights
|
||||||
|
for l in range(self.args.num_hidden_layers):
|
||||||
|
prefix = f"model.layers.{l}"
|
||||||
|
for n in ["up_proj", "down_proj", "gate_proj"]:
|
||||||
|
for k in ["weight", "scales", "biases"]:
|
||||||
|
if f"{prefix}.mlp.experts.0.{n}.{k}" in weights:
|
||||||
|
to_join = [
|
||||||
|
weights.pop(f"{prefix}.mlp.experts.{e}.{n}.{k}")
|
||||||
|
for e in range(self.args.num_experts)
|
||||||
|
]
|
||||||
|
weights[f"{prefix}.mlp.switch_mlp.{n}.{k}"] = mx.stack(to_join)
|
||||||
|
return weights
|
||||||
|
|
||||||
|
@property
|
||||||
|
def layers(self):
|
||||||
|
return self.model.layers
|
@ -35,14 +35,25 @@ def make_sampler(
|
|||||||
"""
|
"""
|
||||||
if temp == 0:
|
if temp == 0:
|
||||||
return lambda x: mx.argmax(x, axis=-1)
|
return lambda x: mx.argmax(x, axis=-1)
|
||||||
elif top_p > 0 and top_p < 1.0:
|
|
||||||
return lambda x: top_p_sampling(x, top_p, temp)
|
# Create sampler chain
|
||||||
elif min_p != 0.0:
|
sampling_methods = []
|
||||||
return lambda x: min_p_sampling(x, min_p, min_tokens_to_keep, temp)
|
if top_k > 0:
|
||||||
elif top_k > 0:
|
sampling_methods.append(lambda x: apply_top_k(x, top_k))
|
||||||
return lambda x: top_k_sampling(x, top_k, temp)
|
if top_p > 0 and top_p < 1.0:
|
||||||
else:
|
sampling_methods.append(lambda x: apply_top_p(x, top_p))
|
||||||
return lambda x: categorical_sampling(x, temp)
|
if min_p != 0.0:
|
||||||
|
sampling_methods.append(lambda x: apply_min_p(x, min_p, min_tokens_to_keep))
|
||||||
|
|
||||||
|
# Apply the sampling methods
|
||||||
|
def sampler(logits):
|
||||||
|
for method in sampling_methods:
|
||||||
|
logits = method(logits)
|
||||||
|
|
||||||
|
# Return the sampled token
|
||||||
|
return categorical_sampling(logits, temp)
|
||||||
|
|
||||||
|
return sampler
|
||||||
|
|
||||||
|
|
||||||
def make_logits_processors(
|
def make_logits_processors(
|
||||||
@ -85,10 +96,9 @@ def make_logits_processors(
|
|||||||
|
|
||||||
|
|
||||||
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
||||||
def top_k_sampling(
|
def apply_top_k(
|
||||||
logprobs: mx.array,
|
logprobs: mx.array,
|
||||||
top_k: int,
|
top_k: int,
|
||||||
temperature=1.0,
|
|
||||||
) -> mx.array:
|
) -> mx.array:
|
||||||
"""
|
"""
|
||||||
Sample from only the top K tokens ranked by probability.
|
Sample from only the top K tokens ranked by probability.
|
||||||
@ -103,20 +113,18 @@ def top_k_sampling(
|
|||||||
f"`top_k` has to be an integer in the (0, {vocab_size}] interval,"
|
f"`top_k` has to be an integer in the (0, {vocab_size}] interval,"
|
||||||
f" but is {top_k}."
|
f" but is {top_k}."
|
||||||
)
|
)
|
||||||
logprobs = logprobs * (1 / temperature)
|
|
||||||
mask_idx = mx.argpartition(-logprobs, kth=top_k - 1, axis=-1)[..., top_k:]
|
mask_idx = mx.argpartition(-logprobs, kth=top_k - 1, axis=-1)[..., top_k:]
|
||||||
masked_logprobs = mx.put_along_axis(
|
masked_logprobs = mx.put_along_axis(
|
||||||
logprobs, mask_idx, mx.array(-float("inf"), logprobs.dtype), axis=-1
|
logprobs, mask_idx, mx.array(-float("inf"), logprobs.dtype), axis=-1
|
||||||
)
|
)
|
||||||
return mx.random.categorical(masked_logprobs, axis=-1)
|
return masked_logprobs
|
||||||
|
|
||||||
|
|
||||||
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
||||||
def min_p_sampling(
|
def apply_min_p(
|
||||||
logprobs: mx.array,
|
logprobs: mx.array,
|
||||||
min_p: float,
|
min_p: float,
|
||||||
min_tokens_to_keep: int = 1,
|
min_tokens_to_keep: int = 1,
|
||||||
temperature=1.0,
|
|
||||||
) -> mx.array:
|
) -> mx.array:
|
||||||
"""
|
"""
|
||||||
Apply min-p sampling to the logprobs.
|
Apply min-p sampling to the logprobs.
|
||||||
@ -144,8 +152,6 @@ def min_p_sampling(
|
|||||||
)
|
)
|
||||||
# reference implementation: https://github.com/huggingface/transformers/blob/main/src/transformers/generation/logits_process.py#L531-L605
|
# reference implementation: https://github.com/huggingface/transformers/blob/main/src/transformers/generation/logits_process.py#L531-L605
|
||||||
|
|
||||||
logprobs = logprobs * (1 / temperature)
|
|
||||||
|
|
||||||
# Indices sorted in decreasing order
|
# Indices sorted in decreasing order
|
||||||
sorted_indices = mx.argsort(-logprobs, axis=-1)
|
sorted_indices = mx.argsort(-logprobs, axis=-1)
|
||||||
sorted_logprobs = mx.take_along_axis(logprobs, sorted_indices, axis=-1)
|
sorted_logprobs = mx.take_along_axis(logprobs, sorted_indices, axis=-1)
|
||||||
@ -163,25 +169,31 @@ def min_p_sampling(
|
|||||||
# Create pool of tokens with probability less than scaled min_p
|
# Create pool of tokens with probability less than scaled min_p
|
||||||
selected_logprobs = mx.where(tokens_to_remove, -float("inf"), sorted_logprobs)
|
selected_logprobs = mx.where(tokens_to_remove, -float("inf"), sorted_logprobs)
|
||||||
|
|
||||||
# Return sampled tokens
|
# Create a mapping to rearrange back to original indices
|
||||||
sorted_tokens = mx.random.categorical(selected_logprobs, axis=-1)[:, None]
|
# Use argsort of sorted_indices to get the inverse permutation
|
||||||
return mx.take_along_axis(sorted_indices, sorted_tokens, axis=-1).squeeze(1)
|
inverse_indices = mx.argsort(sorted_indices, axis=-1)
|
||||||
|
|
||||||
|
# Rearrange selected_logprobs back to original order
|
||||||
|
original_order_logprobs = mx.take_along_axis(
|
||||||
|
selected_logprobs, inverse_indices, axis=-1
|
||||||
|
)
|
||||||
|
|
||||||
|
return original_order_logprobs
|
||||||
|
|
||||||
|
|
||||||
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
||||||
def top_p_sampling(logits: mx.array, top_p: float, temperature: float) -> mx.array:
|
def apply_top_p(logits: mx.array, top_p: float) -> mx.array:
|
||||||
"""
|
"""
|
||||||
Apply top-p (nucleus) sampling to logits.
|
Apply top-p (nucleus) sampling to logits.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
logits: The logits from the model's output.
|
logits: The logits from the model's output.
|
||||||
top_p: The cumulative probability threshold for top-p filtering.
|
top_p: The cumulative probability threshold for top-p filtering.
|
||||||
temperature: Temperature parameter for softmax distribution reshaping.
|
|
||||||
Returns:
|
Returns:
|
||||||
token selected based on the top-p criterion.
|
token selected based on the top-p criterion.
|
||||||
"""
|
"""
|
||||||
# referenced implementation from https://github.com/huggingface/transformers/blob/main/src/transformers/generation/logits_process.py#L449-L460
|
# referenced implementation from https://github.com/huggingface/transformers/blob/main/src/transformers/generation/logits_process.py#L449-L460
|
||||||
probs = mx.softmax(logits * (1 / temperature), axis=-1)
|
probs = mx.softmax(logits, axis=-1)
|
||||||
|
|
||||||
# sort probs in ascending order
|
# sort probs in ascending order
|
||||||
sorted_indices = mx.argsort(probs, axis=-1)
|
sorted_indices = mx.argsort(probs, axis=-1)
|
||||||
@ -196,8 +208,15 @@ def top_p_sampling(logits: mx.array, top_p: float, temperature: float) -> mx.arr
|
|||||||
0,
|
0,
|
||||||
)
|
)
|
||||||
|
|
||||||
sorted_tokens = mx.random.categorical(mx.log(top_probs), axis=-1)[:, None]
|
# Create a mapping to rearrange back to original indices
|
||||||
return mx.take_along_axis(sorted_indices, sorted_tokens, axis=-1).squeeze(1)
|
# Use argsort of sorted_indices to get the inverse permutation
|
||||||
|
inverse_indices = mx.argsort(sorted_indices, axis=-1)
|
||||||
|
|
||||||
|
# Rearrange top_probs back to original order
|
||||||
|
original_order_probs = mx.take_along_axis(top_probs, inverse_indices, axis=-1)
|
||||||
|
|
||||||
|
# Convert back to logits and return
|
||||||
|
return mx.log(original_order_probs)
|
||||||
|
|
||||||
|
|
||||||
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
||||||
|
@ -98,6 +98,7 @@ def linear_to_lora_layers(
|
|||||||
"minicpm",
|
"minicpm",
|
||||||
"deepseek",
|
"deepseek",
|
||||||
"olmo2",
|
"olmo2",
|
||||||
|
"olmoe",
|
||||||
"internlm3",
|
"internlm3",
|
||||||
]:
|
]:
|
||||||
keys = set(["self_attn.q_proj", "self_attn.v_proj"])
|
keys = set(["self_attn.q_proj", "self_attn.v_proj"])
|
||||||
@ -106,6 +107,8 @@ def linear_to_lora_layers(
|
|||||||
if model.model_type == "qwen2_moe":
|
if model.model_type == "qwen2_moe":
|
||||||
keys.add("mlp.gate")
|
keys.add("mlp.gate")
|
||||||
keys.add("mlp.shared_expert_gate")
|
keys.add("mlp.shared_expert_gate")
|
||||||
|
if model.model_type == "olmoe":
|
||||||
|
keys.add("mlp.gate")
|
||||||
|
|
||||||
elif model.model_type == "gpt_bigcode":
|
elif model.model_type == "gpt_bigcode":
|
||||||
keys = set(["attn.c_attn"])
|
keys = set(["attn.c_attn"])
|
||||||
|
@ -298,7 +298,7 @@ class TestPromptCache(unittest.TestCase):
|
|||||||
):
|
):
|
||||||
i += 1
|
i += 1
|
||||||
self.assertEqual(tok, toks[i])
|
self.assertEqual(tok, toks[i])
|
||||||
self.assertTrue(mx.allclose(logits, all_logits[i], rtol=2e-2))
|
self.assertTrue(mx.allclose(logits, all_logits[i], rtol=3e-2))
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
@ -1,79 +1,97 @@
|
|||||||
import unittest
|
import unittest
|
||||||
|
|
||||||
import mlx.core as mx
|
import mlx.core as mx
|
||||||
from mlx_lm.sample_utils import min_p_sampling, top_k_sampling, top_p_sampling
|
from mlx_lm.sample_utils import apply_min_p, apply_top_k, apply_top_p
|
||||||
|
|
||||||
|
|
||||||
class TestSampleUtils(unittest.TestCase):
|
class TestSampleUtils(unittest.TestCase):
|
||||||
def test_top_p_sampling(self):
|
def test_apply_top_p(self):
|
||||||
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
||||||
logits = mx.log(probs)
|
logits = mx.log(probs)
|
||||||
temperature = 1.0
|
|
||||||
|
|
||||||
token = top_p_sampling(logits, 0.3, temperature).item()
|
new_logits = apply_top_p(logits, 0.3)
|
||||||
self.assertEqual(token, 0)
|
actual_probs = mx.softmax(new_logits.squeeze())
|
||||||
|
self.assertEqual(actual_probs.tolist(), [1.0, 0.0, 0.0, 0.0])
|
||||||
|
|
||||||
token = top_p_sampling(logits, 0.95, temperature).item()
|
new_logits = apply_top_p(logits, 0.95)
|
||||||
self.assertTrue(token in (0, 3))
|
actual_probs = mx.softmax(new_logits.squeeze())
|
||||||
|
self.assertTrue(mx.allclose(probs.squeeze(), actual_probs))
|
||||||
|
|
||||||
probs = mx.array([0.0, 0.5, 0.4, 0.1])[None]
|
probs = mx.array([0.0, 0.5, 0.4, 0.1])[None]
|
||||||
logits = mx.log(probs)
|
logits = mx.log(probs)
|
||||||
|
new_logits = apply_top_p(logits, 0.4)
|
||||||
|
actual_probs = mx.softmax(new_logits.squeeze())
|
||||||
|
self.assertEqual(actual_probs.tolist(), [0.0, 1.0, 0.0, 0.0])
|
||||||
|
|
||||||
token = top_p_sampling(logits, 0.4, temperature).item()
|
new_logits = apply_top_p(logits, 0.6)
|
||||||
self.assertEqual(token, 1)
|
actual_probs = mx.softmax(new_logits.squeeze())
|
||||||
|
self.assertEqual(
|
||||||
|
[round(p, 4) for p in actual_probs.tolist()], [0.0, 0.5556, 0.4444, 0.0]
|
||||||
|
)
|
||||||
|
|
||||||
token = top_p_sampling(logits, 0.6, temperature).item()
|
new_logits = apply_top_p(logits, 0.95)
|
||||||
self.assertTrue(token in (1, 2))
|
actual_probs = mx.softmax(new_logits.squeeze())
|
||||||
|
actual_rounded = [round(p, 4) for p in actual_probs.tolist()]
|
||||||
|
expected_rounded = [0.0, 0.5, 0.4, 0.1]
|
||||||
|
self.assertEqual(actual_rounded, expected_rounded)
|
||||||
|
self.assertAlmostEqual(sum(actual_probs.tolist()), 1.0)
|
||||||
|
|
||||||
token = top_p_sampling(logits, 0.95, temperature).item()
|
# Batch mode works
|
||||||
self.assertTrue(token in (1, 2, 3))
|
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.1, 0.1]])
|
||||||
|
logits = mx.log(probs)
|
||||||
|
new_logits = apply_top_p(logits, 0.5)
|
||||||
|
actual_probs = mx.softmax(new_logits, axis=-1)
|
||||||
|
self.assertEqual(
|
||||||
|
actual_probs.tolist(), [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0]]
|
||||||
|
)
|
||||||
|
|
||||||
|
def test_apply_min_p(self):
|
||||||
|
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
||||||
|
logits = mx.log(probs)
|
||||||
|
new_logits = apply_min_p(logits, 0.8)
|
||||||
|
actual_probs = mx.softmax(new_logits.squeeze())
|
||||||
|
self.assertEqual(actual_probs.tolist(), [1.0, 0.0, 0.0, 0.0])
|
||||||
|
|
||||||
|
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
||||||
|
logits = mx.log(probs)
|
||||||
|
new_logits = apply_min_p(logits, 0.05)
|
||||||
|
actual_probs = mx.softmax(new_logits.squeeze())
|
||||||
|
self.assertTrue(mx.allclose(actual_probs, mx.squeeze(probs)))
|
||||||
|
|
||||||
# Batch mode works
|
# Batch mode works
|
||||||
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]])
|
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]])
|
||||||
logits = mx.log(probs)
|
logits = mx.log(probs)
|
||||||
tokens = top_p_sampling(logits, 0.5, temperature)
|
new_logits = apply_min_p(logits, 0.7)
|
||||||
self.assertEqual(tokens.tolist(), [0, 1])
|
actual_probs = mx.softmax(new_logits, axis=-1)
|
||||||
|
self.assertEqual(
|
||||||
|
actual_probs.tolist(), [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0]]
|
||||||
|
)
|
||||||
|
|
||||||
def test_min_p_sampling(self):
|
def test_apply_top_k(self):
|
||||||
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
|
||||||
logits = mx.log(probs)
|
|
||||||
temperature = 1.0
|
|
||||||
token = min_p_sampling(logits, 0.8)
|
|
||||||
self.assertEqual(token, 0)
|
|
||||||
|
|
||||||
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
|
||||||
logits = mx.log(probs)
|
|
||||||
temperature = 1.0
|
|
||||||
for _ in range(5):
|
|
||||||
token = min_p_sampling(logits, 0.05)
|
|
||||||
self.assertTrue(token in (0, 3))
|
|
||||||
|
|
||||||
# Batch mode works
|
|
||||||
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]])
|
|
||||||
logits = mx.log(probs)
|
|
||||||
tokens = min_p_sampling(logits, 0.7)
|
|
||||||
self.assertEqual(tokens.tolist(), [0, 1])
|
|
||||||
|
|
||||||
def test_top_k_sampling(self):
|
|
||||||
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
||||||
logits = mx.log(probs)
|
logits = mx.log(probs)
|
||||||
|
|
||||||
token = top_k_sampling(logits, 1).item()
|
new_logits = apply_top_k(logits, 1)
|
||||||
self.assertEqual(token, 0)
|
actual_probs = mx.softmax(new_logits.squeeze())
|
||||||
|
self.assertEqual(actual_probs.tolist(), [1.0, 0.0, 0.0, 0.0])
|
||||||
|
|
||||||
probs = mx.array([0.5, 0.0, 0.0, 0.5])[None]
|
probs = mx.array([0.6, 0.0, 0.1, 0.3])[None]
|
||||||
tokens = set()
|
logits = mx.log(probs)
|
||||||
for _ in range(100):
|
new_logits = apply_top_k(logits, 2)
|
||||||
token = top_k_sampling(logits, 2)
|
actual_probs = mx.softmax(new_logits.squeeze())
|
||||||
tokens.add(token.item())
|
self.assertEqual(
|
||||||
self.assertEqual(tokens, {0, 3})
|
[round(p, 4) for p in actual_probs.tolist()], [0.6667, 0.0, 0.0, 0.3333]
|
||||||
|
)
|
||||||
|
|
||||||
# Batch mode works
|
# Batch mode works
|
||||||
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]])
|
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]])
|
||||||
logits = mx.log(probs)
|
logits = mx.log(probs)
|
||||||
|
|
||||||
tokens = top_k_sampling(logits, 1)
|
new_logits = apply_top_k(logits, 1)
|
||||||
self.assertEqual(tokens.tolist(), [0, 1])
|
actual_probs = mx.softmax(new_logits, axis=-1)
|
||||||
|
self.assertEqual(
|
||||||
|
actual_probs.tolist(), [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0]]
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
Loading…
Reference in New Issue
Block a user