fix model loading

This commit is contained in:
Prince Canuma 2025-03-12 09:37:17 +01:00
parent 8fd3f5a131
commit 0e57d38f47

View File

@ -12,19 +12,19 @@ from .base import BaseModelArgs, create_attention_mask
@dataclass @dataclass
class ModelArgs(BaseModelArgs): class ModelArgs(BaseModelArgs):
model_type: str model_type: str
hidden_size: int hidden_size: int =1152
num_hidden_layers: int num_hidden_layers: int = 26
intermediate_size: int intermediate_size: int = 6912
num_attention_heads: int = 8 num_attention_heads: int = 4
head_dim: int = 256 head_dim: int = 256
rms_norm_eps: float = 1.0e-6 rms_norm_eps: float = 1.0e-6
vocab_size: int = 262208 vocab_size: int = 262144
num_key_value_heads: int = 4 num_key_value_heads: int = 1
rope_global_base_freq: float = 1_000_000.0 rope_global_base_freq: float = 1_000_000.0
rope_local_base_freq: float = 10_000.0 rope_local_base_freq: float = 10_000.0
rope_traditional: bool = False rope_traditional: bool = False
query_pre_attn_scalar: float = 0.0625 query_pre_attn_scalar: float = 256
sliding_window: int = 1024 sliding_window: int = 512
rope_scaling: Optional[Dict[str, Union[float, List[float]]]] = None rope_scaling: Optional[Dict[str, Union[float, List[float]]]] = None
mm_tokens_per_image: int = 256 mm_tokens_per_image: int = 256
sliding_window_pattern: int = 6 sliding_window_pattern: int = 6
@ -60,7 +60,7 @@ class Attention(nn.Module):
self.q_norm = nn.RMSNorm(dims=head_dim, eps=args.rms_norm_eps) self.q_norm = nn.RMSNorm(dims=head_dim, eps=args.rms_norm_eps)
self.k_norm = nn.RMSNorm(dims=head_dim, eps=args.rms_norm_eps) self.k_norm = nn.RMSNorm(dims=head_dim, eps=args.rms_norm_eps)
self.is_sliding = (layer_idx + 1) % args.sliding_window_pattern != 0 self.is_sliding = (layer_idx + 1) % args.sliding_window_pattern == 0
self.rope = nn.RoPE( self.rope = nn.RoPE(
head_dim, head_dim,
@ -118,7 +118,7 @@ class MLP(nn.Module):
def __call__(self, x) -> mx.array: def __call__(self, x) -> mx.array:
# This should not be GELU approx, jax.nn.gelu # This should not be GELU approx, jax.nn.gelu
return self.down_proj(nn.gelu_approx(self.gate_proj(x)) * self.up_proj(x)) return self.down_proj(nn.gelu_fast_approx(self.gate_proj(x)) * self.up_proj(x))
class TransformerBlock(nn.Module): class TransformerBlock(nn.Module):
@ -169,23 +169,20 @@ class Gemma3Model(nn.Module):
def __call__( def __call__(
self, self,
inputs: mx.array, inputs: mx.array,
inputs_embeds: mx.array = None,
mask: mx.array = None, mask: mx.array = None,
cache=None, cache=None,
): ):
if inputs_embeds is None:
h = self.embed_tokens(inputs)
else:
h = inputs_embeds
h = self.embed_tokens(inputs)
h *= self.args.hidden_size**0.5 # persistent precision issue in scaling h *= self.args.hidden_size**0.5 # persistent precision issue in scaling
if cache is None: if cache is None:
cache = [None] * len(self.layers) cache = [None] * len(self.layers)
# Sliding window if mask is None:
j = self.args.sliding_window_pattern # Sliding window
mask = create_attention_mask(h, cache[j - 1 : j]) j = self.args.sliding_window_pattern
mask = create_attention_mask(h, cache[j - 1 : j])
for layer, c in zip(self.layers, cache): for layer, c in zip(self.layers, cache):
h = layer(h, mask, c) h = layer(h, mask, c)
@ -194,28 +191,27 @@ class Gemma3Model(nn.Module):
class Model(nn.Module): class Model(nn.Module):
def __init__(self, config: ModelArgs): def __init__(self, args: ModelArgs):
super().__init__() super().__init__()
self.config = config self.args = args
self.model_type = config.model_type self.model_type = args.model_type
self.model = Gemma3Model(config) self.model = Gemma3Model(args)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
def __call__( def __call__(
self, self,
inputs: mx.array, inputs: mx.array,
cache=None, cache=None,
inputs_embeds=None,
mask: Optional[mx.array] = None, mask: Optional[mx.array] = None,
): ):
out = self.model(inputs, inputs_embeds, mask, cache) out = self.model(inputs, mask, cache)
out = self.lm_head(out) out = self.lm_head(out)
return out return out
def sanitize(self, weights): def sanitize(self, weights):
if "lm_head.weight" not in weights: if "lm_head.weight" not in weights:
weights["language_model.lm_head.weight"] = weights[ weights["lm_head.weight"] = weights[
"language_model.model.embed_tokens.weight" "model.embed_tokens.weight"
] ]
return { return {
k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
@ -245,6 +241,6 @@ class Model(nn.Module):
) )
else: else:
caches.append( caches.append(
RotatingKVCache() RotatingKVCache(max_size=self.args.sliding_window, keep=0)
) )
return caches return caches