mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-28 12:13:25 +08:00
typos in readme
This commit is contained in:
parent
2ffd0da009
commit
0f66a12721
@ -2,8 +2,7 @@
|
||||
|
||||
Run the Mixtral[^mixtral] 8x7B mixture-of-experts (MoE) model in MLX on Apple silicon.
|
||||
|
||||
Note, this model needs a machine with substantial RAM (>= 128GB) to run in
|
||||
16-bit precision.
|
||||
Note, for 16-bit precision this model needs a machine with substantial RAM (~100GB) to run.
|
||||
|
||||
### Setup
|
||||
|
||||
@ -15,7 +14,7 @@ For example with Homebrew:
|
||||
brew install git-lfs
|
||||
```
|
||||
|
||||
Download the models from HugginFace:
|
||||
Download the models from HuggingFace:
|
||||
|
||||
```
|
||||
git clone https://huggingface.co/someone13574/mixtral-8x7b-32kseqlen
|
||||
@ -27,7 +26,8 @@ cd mixtral-8x7b-32kseqlen/
|
||||
cat consolidated.00.pth-split0 consolidated.00.pth-split1 consolidated.00.pth-split2 consolidated.00.pth-split3 consolidated.00.pth-split4 consolidated.00.pth-split5 consolidated.00.pth-split6 consolidated.00.pth-split7 consolidated.00.pth-split8 consolidated.00.pth-split9 consolidated.00.pth-split10 > consolidated.00.pth
|
||||
```
|
||||
|
||||
Now from `mlx-exmaples/mixtral` conver the weights to NumPy so MLX can read them:
|
||||
Now from `mlx-exmaples/mixtral` conver and save the weights as NumPy arrays so
|
||||
MLX can read them:
|
||||
|
||||
```
|
||||
python convert.py --model_path mixtral-8x7b-32kseqlen/
|
||||
@ -49,4 +49,4 @@ As easy as:
|
||||
python mixtral.py --model_path mixtral mixtral-8x7b-32kseqlen/
|
||||
```
|
||||
|
||||
[^mixtral] Refer to Mistral's [blog post](https://mistral.ai/news/mixtral-of-experts/) for more details.
|
||||
[^mixtral]: Refer to Mistral's [blog post](https://mistral.ai/news/mixtral-of-experts/) for more details.
|
||||
|
Loading…
Reference in New Issue
Block a user