mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00
Add T5 and Flan-T5 example (#113)
* Add skeleton * Load all encoder weights * Pass config to all modules, fix ln * Load position bias embeddings * Load decoder weights * Move position biases to attention module * translate pytorch to mx * Fix default prompt * Fix relative_attention_max_distance config * No scaling, no encoder mask * LM head * Decode (broken after 1st token) * Use position bias in all layers * Utils to compare encoder output * Fix layer norm * Fix decoder mask * Use position bias in decoder * Concatenate tokens * Remove prints * Stop on eos * Measure tokens/s * with cache * bug fix with bidirectional only for encoder, add offset to position bias * format * Fix T5.__call__ * Stream output * Add argument to generate float16 npz * Load config from HF to support any model * Uncomment bidirectional param * Add gitignore * Add readme.md for t5 * Fix relative position scale * Fix --encode-only * Run hf_t5 with any model * Add hf generation for comparison * Fix type for attention mask * Increase hf max_length * Rescale output before projecting on vocab * readme updates * nits * Pass ln2 to cross attention * Fix example * Fix attention for 3b model * fp16, abstract tokenizer a bit, format * clamp for low precision * higher clipping, remove non-helpful casts * default to fp32 for now * Adds support for flan-t5 * Update t5 docs on variant support * readme flan * nit --------- Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
parent
1e7f4a5921
commit
10a7b99e83
1
t5/.gitignore
vendored
Normal file
1
t5/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
||||
*.npz
|
53
t5/README.md
Normal file
53
t5/README.md
Normal file
@ -0,0 +1,53 @@
|
||||
# T5
|
||||
|
||||
The T5 models are encoder-decoder models pre-trained on a mixture of
|
||||
unsupervised and supervised tasks.[^1] These models work well on a variety of
|
||||
tasks by prepending task-specific prefixes to the input, e.g.:
|
||||
`translate English to German: …`, `summarize: ….`, etc.
|
||||
|
||||
This example also supports the FLAN-T5 models variants.[^2]
|
||||
|
||||
## Setup
|
||||
|
||||
Download and convert the model:
|
||||
|
||||
```sh
|
||||
python convert.py --model <model>
|
||||
```
|
||||
|
||||
This will make the `<model>.npz` file which MLX can read.
|
||||
|
||||
The `<model>` can be any of the following:
|
||||
|
||||
| Model Name | Model Size |
|
||||
| ---------- | ----------
|
||||
| t5-small | 60 million |
|
||||
| t5-base | 220 million |
|
||||
| t5-large | 770 million |
|
||||
| t5-3b | 3 billion |
|
||||
| t5-11b | 11 billion |
|
||||
|
||||
The FLAN variants can be specified with `google/flan-t5-small`,
|
||||
`google/flan-t5-base`, etc. See the [Hugging Face
|
||||
page](https://huggingface.co/docs/transformers/model_doc/flan-t5) for a
|
||||
complete list of models.
|
||||
|
||||
## Generate
|
||||
|
||||
Generate text with:
|
||||
|
||||
```sh
|
||||
python t5.py --model t5-small --prompt "translate English to German: A tasty apple"
|
||||
```
|
||||
|
||||
This should give the output: `Ein leckerer Apfel`
|
||||
|
||||
To see a list of options run:
|
||||
|
||||
```sh
|
||||
python t5.py --help
|
||||
```
|
||||
|
||||
[^1]: For more information on T5 see the [original paper](https://arxiv.org/abs/1910.10683)
|
||||
or the [Hugging Face page](https://huggingface.co/docs/transformers/model_doc/t5).
|
||||
[^2]: For more information on FLAN-T5 see the [original paper](https://arxiv.org/abs/2210.11416).
|
68
t5/convert.py
Normal file
68
t5/convert.py
Normal file
@ -0,0 +1,68 @@
|
||||
from transformers import T5ForConditionalGeneration
|
||||
import numpy as np
|
||||
|
||||
|
||||
SHARED_REPLACEMENT_PATTERNS = [
|
||||
(".block.", ".layers."),
|
||||
(".k.", ".key_proj."),
|
||||
(".o.", ".out_proj."),
|
||||
(".q.", ".query_proj."),
|
||||
(".v.", ".value_proj."),
|
||||
("shared.", "wte."),
|
||||
("lm_head.", "lm_head.linear."),
|
||||
(".layer.0.layer_norm.", ".ln1."),
|
||||
(".layer.1.layer_norm.", ".ln2."),
|
||||
(".layer.2.layer_norm.", ".ln3."),
|
||||
(".final_layer_norm.", ".ln."),
|
||||
(
|
||||
"layers.0.layer.0.SelfAttention.relative_attention_bias.",
|
||||
"relative_attention_bias.embeddings.",
|
||||
),
|
||||
]
|
||||
|
||||
ENCODER_REPLACEMENT_PATTERNS = [
|
||||
(".layer.0.SelfAttention.", ".attention."),
|
||||
(".layer.1.DenseReluDense.", ".dense."),
|
||||
]
|
||||
|
||||
DECODER_REPLACEMENT_PATTERNS = [
|
||||
(".layer.0.SelfAttention.", ".self_attention."),
|
||||
(".layer.1.EncDecAttention.", ".cross_attention."),
|
||||
(".layer.2.DenseReluDense.", ".dense."),
|
||||
]
|
||||
|
||||
|
||||
def replace_key(key: str) -> str:
|
||||
for old, new in SHARED_REPLACEMENT_PATTERNS:
|
||||
key = key.replace(old, new)
|
||||
if key.startswith("encoder."):
|
||||
for old, new in ENCODER_REPLACEMENT_PATTERNS:
|
||||
key = key.replace(old, new)
|
||||
elif key.startswith("decoder."):
|
||||
for old, new in DECODER_REPLACEMENT_PATTERNS:
|
||||
key = key.replace(old, new)
|
||||
return key
|
||||
|
||||
|
||||
def convert(model_name):
|
||||
model = T5ForConditionalGeneration.from_pretrained(model_name, torch_dtype="auto")
|
||||
weights = {
|
||||
replace_key(k): v.numpy().astype(np.float16)
|
||||
for k, v in model.state_dict().items()
|
||||
}
|
||||
file_name = model_name.replace("/", "-")
|
||||
np.savez(f"{file_name}.npz", **weights)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser(description="Convert T5 weights to MLX")
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
type=str,
|
||||
help="Name of the T5 model.",
|
||||
default="t5-small",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
convert(args.model)
|
54
t5/hf_t5.py
Normal file
54
t5/hf_t5.py
Normal file
@ -0,0 +1,54 @@
|
||||
from transformers import T5ForConditionalGeneration, T5EncoderModel, AutoTokenizer
|
||||
|
||||
import argparse
|
||||
|
||||
|
||||
def embed(t5_model: str):
|
||||
batch = [
|
||||
"translate English to German: That is good.",
|
||||
"This is an example of T5 working on MLX.",
|
||||
]
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(t5_model)
|
||||
torch_model = T5EncoderModel.from_pretrained(t5_model)
|
||||
torch_tokens = tokenizer(batch, return_tensors="pt", padding=True)
|
||||
torch_forward = torch_model(**torch_tokens, output_hidden_states=True)
|
||||
torch_output = torch_forward.last_hidden_state.detach().numpy()
|
||||
|
||||
print("\n TF BERT:")
|
||||
for input_str, embedding in list(zip(batch, torch_output)):
|
||||
print("Input:", input_str)
|
||||
print(embedding)
|
||||
print()
|
||||
|
||||
|
||||
def generate(t5_model: str):
|
||||
prompt = "translate English to German: As much as six inches of rain could fall in the New York City region through Monday morning, and officials warned of flooding along the coast."
|
||||
tokenizer = AutoTokenizer.from_pretrained(t5_model)
|
||||
torch_model = T5ForConditionalGeneration.from_pretrained(t5_model)
|
||||
torch_tokens = tokenizer(prompt, return_tensors="pt", padding=True).input_ids
|
||||
outputs = torch_model.generate(torch_tokens, do_sample=False, max_length=512)
|
||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Run the T5 model using Hugging Face Transformers."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--encode-only",
|
||||
action="store_true",
|
||||
help="Only run the encoder and print the embeddings.",
|
||||
default=False,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
default="t5-small",
|
||||
help="The huggingface name of the T5 model to save.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
if args.encode_only:
|
||||
embed(args.model)
|
||||
else:
|
||||
generate(args.model)
|
||||
|
3
t5/requirements.txt
Normal file
3
t5/requirements.txt
Normal file
@ -0,0 +1,3 @@
|
||||
mlx
|
||||
numpy
|
||||
transformers
|
469
t5/t5.py
Normal file
469
t5/t5.py
Normal file
@ -0,0 +1,469 @@
|
||||
import argparse
|
||||
from typing import Optional, Tuple, List
|
||||
from time import perf_counter_ns
|
||||
|
||||
import numpy as np
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from mlx.utils import tree_unflatten, tree_map
|
||||
from transformers import T5Config, T5Tokenizer
|
||||
|
||||
|
||||
def _relative_position_bucket(
|
||||
relative_position, bidirectional=True, num_buckets=32, max_distance=128
|
||||
):
|
||||
"""
|
||||
Adapted from HF Tensorflow:
|
||||
https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py
|
||||
|
||||
Translate relative position to a bucket number for relative attention. The relative position is defined as
|
||||
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
|
||||
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
|
||||
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
|
||||
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
|
||||
This should allow for more graceful generalization to longer sequences than the model has been trained on
|
||||
|
||||
Args:
|
||||
relative_position: an int32 Tensor
|
||||
bidirectional: a boolean - whether the attention is bidirectional
|
||||
num_buckets: an integer
|
||||
max_distance: an integer
|
||||
|
||||
Returns:
|
||||
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
|
||||
"""
|
||||
relative_buckets = 0
|
||||
if bidirectional:
|
||||
num_buckets //= 2
|
||||
relative_buckets += (relative_position > 0).astype(mx.int16) * num_buckets
|
||||
relative_position = mx.abs(relative_position)
|
||||
else:
|
||||
relative_position = -mx.minimum(
|
||||
relative_position, mx.zeros_like(relative_position)
|
||||
)
|
||||
# now relative_position is in the range [0, inf)
|
||||
|
||||
# half of the buckets are for exact increments in positions
|
||||
max_exact = num_buckets // 2
|
||||
is_small = relative_position < max_exact
|
||||
|
||||
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
|
||||
scale = (num_buckets - max_exact) / np.log(max_distance / max_exact)
|
||||
relative_position_if_large = max_exact + (
|
||||
mx.log(relative_position.astype(mx.float32) / max_exact) * scale
|
||||
).astype(mx.int16)
|
||||
relative_position_if_large = mx.minimum(relative_position_if_large, num_buckets - 1)
|
||||
relative_buckets += mx.where(
|
||||
is_small, relative_position, relative_position_if_large
|
||||
)
|
||||
return relative_buckets
|
||||
|
||||
|
||||
class RelativePositionBias(nn.Module):
|
||||
def __init__(self, config: T5Config, bidirectional: bool):
|
||||
self.bidirectional = bidirectional
|
||||
self.num_buckets = config.relative_attention_num_buckets
|
||||
self.max_distance = config.relative_attention_max_distance
|
||||
self.n_heads = config.num_heads
|
||||
self.embeddings = nn.Embedding(
|
||||
config.relative_attention_num_buckets, config.num_heads
|
||||
)
|
||||
|
||||
def __call__(self, query_length: int, key_length: int, offset: int = 0):
|
||||
"""Compute binned relative position bias"""
|
||||
context_position = mx.arange(offset, query_length)[:, None]
|
||||
memory_position = mx.arange(key_length)[None, :]
|
||||
|
||||
# shape (query_length, key_length)
|
||||
relative_position = memory_position - context_position
|
||||
relative_position_bucket = _relative_position_bucket(
|
||||
relative_position,
|
||||
bidirectional=self.bidirectional,
|
||||
num_buckets=self.num_buckets,
|
||||
max_distance=self.max_distance,
|
||||
)
|
||||
|
||||
# shape (query_length, key_length, num_heads)
|
||||
values = self.embeddings(relative_position_bucket)
|
||||
|
||||
# shape (num_heads, query_length, key_length)
|
||||
return values.transpose(2, 0, 1)
|
||||
|
||||
|
||||
class MultiHeadAttention(nn.Module):
|
||||
def __init__(self, config: T5Config):
|
||||
super().__init__()
|
||||
inner_dim = config.d_kv * config.num_heads
|
||||
self.num_heads = config.num_heads
|
||||
self.query_proj = nn.Linear(config.d_model, inner_dim, bias=False)
|
||||
self.key_proj = nn.Linear(config.d_model, inner_dim, bias=False)
|
||||
self.value_proj = nn.Linear(config.d_model, inner_dim, bias=False)
|
||||
self.out_proj = nn.Linear(inner_dim, config.d_model, bias=False)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
queries: mx.array,
|
||||
keys: mx.array,
|
||||
values: mx.array,
|
||||
mask: Optional[mx.array],
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
) -> [mx.array, Tuple[mx.array, mx.array]]:
|
||||
queries = self.query_proj(queries)
|
||||
keys = self.key_proj(keys)
|
||||
values = self.value_proj(values)
|
||||
|
||||
num_heads = self.num_heads
|
||||
B, L, _ = queries.shape
|
||||
_, S, _ = keys.shape
|
||||
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
||||
keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 3, 1)
|
||||
values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
|
||||
|
||||
if cache is not None:
|
||||
key_cache, value_cache = cache
|
||||
keys = mx.concatenate([key_cache, keys], axis=3)
|
||||
values = mx.concatenate([value_cache, values], axis=2)
|
||||
|
||||
# Dimensions are [batch x num heads x sequence x hidden dim]
|
||||
queries = queries
|
||||
scores = queries @ keys
|
||||
if mask is not None:
|
||||
scores = scores + mask.astype(scores.dtype)
|
||||
|
||||
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
|
||||
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.out_proj(values_hat), (keys, values)
|
||||
|
||||
|
||||
class RMSNorm(nn.Module):
|
||||
def __init__(self, dims: int, eps: float = 1e-5):
|
||||
super().__init__()
|
||||
self.weight = mx.ones((dims,))
|
||||
self.eps = eps
|
||||
|
||||
def _norm(self, x):
|
||||
return x * mx.rsqrt(x.square().mean(-1, keepdims=True) + self.eps)
|
||||
|
||||
def __call__(self, x):
|
||||
t = x.dtype
|
||||
output = self._norm(x).astype(t)
|
||||
return self.weight * output
|
||||
|
||||
|
||||
class DenseActivation(nn.Module):
|
||||
def __init__(self, config: T5Config):
|
||||
super().__init__()
|
||||
mlp_dims = config.d_ff or config.d_model * 4
|
||||
self.gated = config.feed_forward_proj.startswith("gated")
|
||||
if self.gated:
|
||||
self.wi_0 = nn.Linear(config.d_model, mlp_dims, bias=False)
|
||||
self.wi_1 = nn.Linear(config.d_model, mlp_dims, bias=False)
|
||||
else:
|
||||
self.wi = nn.Linear(config.d_model, mlp_dims, bias=False)
|
||||
self.wo = nn.Linear(mlp_dims, config.d_model, bias=False)
|
||||
activation = config.feed_forward_proj.removeprefix("gated-")
|
||||
if activation == "relu":
|
||||
self.act = nn.relu
|
||||
elif activation == "gelu":
|
||||
self.act = nn.gelu
|
||||
elif activation == "silu":
|
||||
self.act = nn.silu
|
||||
else:
|
||||
raise ValueError(f"Unknown activation: {activation}")
|
||||
|
||||
def __call__(self, x):
|
||||
if self.gated:
|
||||
hidden_act = self.act(self.wi_0(x))
|
||||
hidden_linear = self.wi_1(x)
|
||||
x = hidden_act * hidden_linear
|
||||
else:
|
||||
x = self.act(self.wi(x))
|
||||
return self.wo(x)
|
||||
|
||||
|
||||
class TransformerEncoderLayer(nn.Module):
|
||||
def __init__(self, config: T5Config):
|
||||
super().__init__()
|
||||
self.attention = MultiHeadAttention(config)
|
||||
self.ln1 = RMSNorm(config.d_model, eps=config.layer_norm_epsilon)
|
||||
self.ln2 = RMSNorm(config.d_model, eps=config.layer_norm_epsilon)
|
||||
self.dense = DenseActivation(config)
|
||||
|
||||
def __call__(self, x, mask):
|
||||
y = self.ln1(x)
|
||||
y, _ = self.attention(y, y, y, mask=mask)
|
||||
x = x + y
|
||||
|
||||
y = self.ln2(x)
|
||||
y = self.dense(y)
|
||||
return x + y
|
||||
|
||||
|
||||
class TransformerEncoder(nn.Module):
|
||||
def __init__(self, config: T5Config):
|
||||
super().__init__()
|
||||
self.layers = [
|
||||
TransformerEncoderLayer(config) for i in range(config.num_layers)
|
||||
]
|
||||
self.ln = RMSNorm(config.d_model, eps=config.layer_norm_epsilon)
|
||||
self.relative_attention_bias = RelativePositionBias(config, bidirectional=True)
|
||||
|
||||
def __call__(self, x: mx.array):
|
||||
pos_bias = self.relative_attention_bias(x.shape[1], x.shape[1])
|
||||
for layer in self.layers:
|
||||
x = layer(x, mask=pos_bias)
|
||||
return self.ln(x)
|
||||
|
||||
|
||||
class TransformerDecoderLayer(nn.Module):
|
||||
def __init__(self, config: T5Config):
|
||||
super().__init__()
|
||||
self.self_attention = MultiHeadAttention(config)
|
||||
self.cross_attention = MultiHeadAttention(config)
|
||||
self.ln1 = RMSNorm(config.d_model, eps=config.layer_norm_epsilon)
|
||||
self.ln2 = RMSNorm(config.d_model, eps=config.layer_norm_epsilon)
|
||||
self.ln3 = RMSNorm(config.d_model, eps=config.layer_norm_epsilon)
|
||||
self.dense = DenseActivation(config)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
memory: mx.array,
|
||||
mask: mx.array,
|
||||
memory_mask: mx.array,
|
||||
cache: Optional[List[Tuple[mx.array, mx.array]]] = None,
|
||||
):
|
||||
y = self.ln1(x)
|
||||
y, cache = self.self_attention(y, y, y, mask, cache)
|
||||
x = x + y
|
||||
|
||||
y = self.ln2(x)
|
||||
y, _ = self.cross_attention(y, memory, memory, memory_mask)
|
||||
x = x + y
|
||||
|
||||
y = self.ln3(x)
|
||||
y = self.dense(y)
|
||||
x = x + y
|
||||
|
||||
return x, cache
|
||||
|
||||
|
||||
class TransformerDecoder(nn.Module):
|
||||
def __init__(self, config: T5Config):
|
||||
super().__init__()
|
||||
self.layers = [
|
||||
TransformerDecoderLayer(config) for i in range(config.num_layers)
|
||||
]
|
||||
self.ln = RMSNorm(config.d_model, eps=config.layer_norm_epsilon)
|
||||
self.relative_attention_bias = RelativePositionBias(config, bidirectional=False)
|
||||
|
||||
def __call__(self, x, memory, mask, memory_mask, cache=None):
|
||||
if cache is not None:
|
||||
offset = cache[0][0].shape[3]
|
||||
else:
|
||||
offset = 0
|
||||
cache = [None] * len(self.layers)
|
||||
|
||||
T = offset + x.shape[1]
|
||||
pos_bias = self.relative_attention_bias(T, T, offset=offset)
|
||||
if mask is not None:
|
||||
mask += pos_bias
|
||||
else:
|
||||
mask = pos_bias
|
||||
|
||||
for e, layer in enumerate(self.layers):
|
||||
x, cache[e] = layer(x, memory, mask, memory_mask, cache=cache[e])
|
||||
x = self.ln(x)
|
||||
|
||||
return x, cache
|
||||
|
||||
|
||||
class OutputHead(nn.Module):
|
||||
def __init__(self, config: T5Config):
|
||||
self.linear = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
||||
|
||||
def __call__(self, inputs):
|
||||
return self.linear(inputs)
|
||||
|
||||
|
||||
class T5(nn.Module):
|
||||
def __init__(self, config: T5Config):
|
||||
self.wte = nn.Embedding(config.vocab_size, config.d_model)
|
||||
self.encoder = TransformerEncoder(config)
|
||||
self.decoder = TransformerDecoder(config)
|
||||
self.tie_word_embeddings = config.tie_word_embeddings
|
||||
if not self.tie_word_embeddings:
|
||||
self.lm_head = OutputHead(config)
|
||||
self.model_dim = config.d_model
|
||||
|
||||
def encode(self, inputs: mx.array):
|
||||
return self.encoder(self.wte(inputs))
|
||||
|
||||
def decode(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
memory: mx.array,
|
||||
cache=None,
|
||||
):
|
||||
inputs = self.wte(inputs)
|
||||
T = inputs.shape[1]
|
||||
if T > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(T)
|
||||
mask = mask.astype(inputs.dtype)
|
||||
else:
|
||||
mask = None
|
||||
|
||||
y, cache = self.decoder(
|
||||
inputs, memory=memory, mask=mask, memory_mask=None, cache=cache
|
||||
)
|
||||
if not self.tie_word_embeddings:
|
||||
y *= self.model_dim**-0.5
|
||||
y = self.lm_head(y)
|
||||
else:
|
||||
y = y @ self.wte.weight.T
|
||||
return y, cache
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
decoder_inputs: mx.array,
|
||||
):
|
||||
return self.decode(decoder_inputs, self.encode(inputs))[0]
|
||||
|
||||
|
||||
class Tokenizer:
|
||||
def __init__(self, model_name: str, config: T5Config):
|
||||
self._decoder_start_id = config.decoder_start_token_id
|
||||
self._tokenizer = T5Tokenizer.from_pretrained(
|
||||
args.model,
|
||||
legacy=False,
|
||||
model_max_length=config.n_positions,
|
||||
)
|
||||
|
||||
@property
|
||||
def eos_id(self) -> int:
|
||||
return self._tokenizer.eos_token_id
|
||||
|
||||
@property
|
||||
def decoder_start_id(self) -> int:
|
||||
return self._decoder_start_id
|
||||
|
||||
def encode(self, s: str) -> mx.array:
|
||||
return mx.array(
|
||||
self._tokenizer(
|
||||
s,
|
||||
return_tensors="np",
|
||||
return_attention_mask=False,
|
||||
)["input_ids"]
|
||||
)
|
||||
|
||||
def decode(self, t: List[int], with_sep: bool = True) -> str:
|
||||
tokens = self._tokenizer.convert_ids_to_tokens(t)
|
||||
return "".join(t.replace("▁", " " if with_sep else "") for t in tokens)
|
||||
|
||||
|
||||
def generate(prompt: str, model: T5, tokenizer: Tokenizer, temp: Optional[float] = 0.0):
|
||||
def sample(logits):
|
||||
if temp == 0:
|
||||
return mx.argmax(logits, axis=-1)
|
||||
else:
|
||||
return mx.random.categorical(logits * (1 / temp))
|
||||
|
||||
prompt = tokenizer.encode(prompt)
|
||||
decoder_inputs = mx.array([tokenizer.decoder_start_id])
|
||||
memory = model.encode(prompt)
|
||||
cache = None
|
||||
y = decoder_inputs
|
||||
while True:
|
||||
logits, cache = model.decode(y[None], memory, cache=cache)
|
||||
y = sample(logits[:, -1, :])
|
||||
yield y.squeeze()
|
||||
|
||||
|
||||
def load_model(model_name: str, dtype: str = "float16"):
|
||||
config = T5Config.from_pretrained(args.model)
|
||||
dtype = getattr(mx, dtype)
|
||||
model = T5(config)
|
||||
file_name = model_name.replace("/", "-")
|
||||
weights = mx.load(f"{file_name}.npz")
|
||||
weights = tree_unflatten(list(weights.items()))
|
||||
weights = tree_map(lambda p: p.astype(dtype), weights)
|
||||
model.update(weights)
|
||||
mx.eval(model.parameters())
|
||||
return model, Tokenizer(args.model, config)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="T5 Inference script")
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
type=str,
|
||||
help="Name of the T5 model.",
|
||||
default="t5-small",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prompt",
|
||||
help="",
|
||||
default="translate English to German: That is good.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--encode-only",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Whether to decode or not. If true, will output last layer of encoder.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-tokens",
|
||||
"-m",
|
||||
type=int,
|
||||
default=100,
|
||||
help="Maximum number of tokens to generate",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--temp",
|
||||
help="The sampling temperature.",
|
||||
type=float,
|
||||
default=0.0,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dtype",
|
||||
help="The model data type.",
|
||||
type=str,
|
||||
choices=["float16", "bfloat16", "float32"],
|
||||
default="float32",
|
||||
)
|
||||
|
||||
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
|
||||
args = parser.parse_args()
|
||||
|
||||
mx.random.seed(args.seed)
|
||||
|
||||
model, tokenizer = load_model(args.model, args.dtype)
|
||||
|
||||
if args.encode_only:
|
||||
print("[INFO] Encoding with T5...", flush=True)
|
||||
print(args.prompt, flush=True)
|
||||
encoder_output = model.encode(tokenizer.encode(args.prompt))
|
||||
print(encoder_output, flush=True)
|
||||
exit(0)
|
||||
|
||||
print("[INFO] Generating with T5...", flush=True)
|
||||
print("Input: ", args.prompt, flush=True)
|
||||
|
||||
start = perf_counter_ns()
|
||||
for token, n_tokens in zip(
|
||||
generate(args.prompt, model, tokenizer, args.temp), range(args.max_tokens)
|
||||
):
|
||||
if token.item() == tokenizer.eos_id:
|
||||
break
|
||||
print(
|
||||
tokenizer.decode([token.item()], with_sep=n_tokens > 0),
|
||||
end="",
|
||||
flush=True,
|
||||
)
|
||||
|
||||
n_tokens += 1
|
||||
end = perf_counter_ns()
|
||||
elapsed = (end - start) / 1.0e9
|
||||
print()
|
||||
print(f"Time: {elapsed:.2f} seconds, tokens/s: {n_tokens / elapsed:.2f}")
|
Loading…
Reference in New Issue
Block a user