This commit is contained in:
Awni Hannun
2024-09-30 08:31:09 -07:00
parent 39e5152ed8
commit 1209d4357d

View File

@@ -101,7 +101,7 @@ def get_model_path(path_or_hf_repo: str, revision: Optional[str] = None) -> Path
return model_path
def apply_repetition_penalty(logits: mx.array, generated_tokens: Any, penalty: float):
def apply_repetition_penalty(logits: mx.array, tokens: mx.array, penalty: float):
"""
Apply repetition penalty to specific logits based on the given context.
@@ -109,19 +109,18 @@ def apply_repetition_penalty(logits: mx.array, generated_tokens: Any, penalty: f
Args:
logits (mx.array): The logits produced by the language model.
generated_tokens (any): A list of N previous tokens.
tokens (mx.array): A list of N previous tokens.
penalty (float): The repetition penalty factor to be applied.
Returns:
logits (mx.array): Logits with repetition penalty applied to generated tokens.
"""
if len(generated_tokens) > 0:
indices = mx.array([token for token in generated_tokens])
selected_logits = logits[:, indices]
if len(tokens) > 0:
selected_logits = logits[:, tokens]
selected_logits = mx.where(
selected_logits < 0, selected_logits * penalty, selected_logits / penalty
)
logits[:, indices] = selected_logits
logits[:, tokens] = selected_logits
return logits
@@ -158,7 +157,7 @@ def generate_step(
max_kv_size: Optional[int] = None,
cache_history: Optional[List[Tuple[mx.array, mx.array]]] = None,
logit_bias: Optional[Dict[int, float]] = None,
logits_processor: Optional[List[Callable[[mx.array, mx.array], mx.array]]] = [],
logits_processor: Optional[List[Callable[[mx.array, mx.array], mx.array]]] = None,
) -> Generator[Tuple[mx.array, mx.array], None, None]:
"""
A generator producing token ids based on the given prompt from the model.
@@ -184,7 +183,7 @@ def generate_step(
logit_bias (dictionary, optional): Additive logit bias.
logits_processor (List[Callable[[mx.array, mx.array], mx.array]], optional):
A list of functions that take tokens and logits and return the processed
logits. Default: ``[]``.
logits. Default: ``None``.
Yields:
Generator[Tuple[mx.array, mx.array], None, None]: A generator producing
@@ -212,18 +211,26 @@ def generate_step(
raise ValueError(
f"repetition_penalty must be a non-negative float, got {repetition_penalty}"
)
logits_processor = logits_processor or []
if repetition_penalty:
def repetition_penalty_processor(tokens: mx.array, logits: mx.array) -> mx.array:
return apply_repetition_penalty(logits, tokens[-repetition_context_size:], repetition_penalty)
def repetition_penalty_processor(tokens, logits):
return apply_repetition_penalty(
logits, tokens[-repetition_context_size:], repetition_penalty
)
logits_processor.append(repetition_penalty_processor)
if logit_bias:
def logit_bias_processor(_: mx.array, logits: mx.array) -> mx.array:
indices = mx.array(list(logit_bias.keys()))
values = mx.array(list(logit_bias.values()))
indices = mx.array(list(logit_bias.keys()))
values = mx.array(list(logit_bias.values()))
def logit_bias_processor(_, logits):
logits[:, indices] += values
return logits
logits_processor.append(logit_bias_processor)
y = prompt
@@ -249,7 +256,7 @@ def generate_step(
if logits_processor:
nonlocal tokens
tokens = mx.concat([tokens, y]) if tokens is not None else y
for processor in logits_processor:
logits = processor(tokens, logits)