mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-28 00:30:09 +08:00
Generalize HF datasets to a collection of HF dataasets via datasets
, adds support for custom chat HF datasets (#1088), and fixes (#1087)
This commit is contained in:
parent
3496cbea46
commit
14a75f3f03
@ -34,14 +34,15 @@ class ChatDataset:
|
||||
https://platform.openai.com/docs/guides/fine-tuning/example-format
|
||||
"""
|
||||
|
||||
def __init__(self, data: List[Dict[str, str]], tokenizer: PreTrainedTokenizer):
|
||||
def __init__(self, data: List[Dict[str, str]], tokenizer: PreTrainedTokenizer, chat_key: str = "messages"):
|
||||
self._data = [
|
||||
tokenizer.apply_chat_template(
|
||||
d["messages"],
|
||||
d[chat_key],
|
||||
tools=d.get("tools", None),
|
||||
)
|
||||
for d in data
|
||||
]
|
||||
self._chat_key = chat_key
|
||||
|
||||
def __getitem__(self, idx: int):
|
||||
return self._data[idx]
|
||||
@ -84,6 +85,29 @@ class CompletionsDataset:
|
||||
return len(self._data)
|
||||
|
||||
|
||||
class CompletionsDatasetCollection:
|
||||
def __init__(self, data: List[Union[ChatDataset, CompletionsDataset]]):
|
||||
self.collection = data
|
||||
|
||||
def __getitem__(self, idx: int):
|
||||
item = next(self.collection)
|
||||
|
||||
curr_idx = idx
|
||||
|
||||
while True:
|
||||
try:
|
||||
if (curr_idx + 1) < len(item):
|
||||
return item[curr_idx]
|
||||
else:
|
||||
curr_idx -= len(item)
|
||||
item = next(self.collection)
|
||||
except StopIteration:
|
||||
raise IndexError(idx)
|
||||
|
||||
def __len__(self):
|
||||
return sum(map(len, self.collection))
|
||||
|
||||
|
||||
def create_dataset(
|
||||
data,
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
@ -157,14 +181,14 @@ def load_hf_dataset(
|
||||
def load_custom_hf_dataset(args, tokenizer: PreTrainedTokenizer):
|
||||
import datasets
|
||||
|
||||
hf_args = args.hf_dataset
|
||||
dataset_name = hf_args["name"]
|
||||
print(f"Loading Hugging Face dataset {dataset_name}.")
|
||||
text_feature = hf_args.get("text_feature")
|
||||
prompt_feature = hf_args.get("prompt_feature")
|
||||
completion_feature = hf_args.get("completion_feature")
|
||||
|
||||
def create_hf_dataset(split: str = None):
|
||||
def create_hf_dataset(
|
||||
dataset_name,
|
||||
text_feature,
|
||||
prompt_feature,
|
||||
completion_feature,
|
||||
chat_feature,
|
||||
split,
|
||||
):
|
||||
ds = datasets.load_dataset(
|
||||
dataset_name,
|
||||
split=split,
|
||||
@ -172,27 +196,61 @@ def load_custom_hf_dataset(args, tokenizer: PreTrainedTokenizer):
|
||||
)
|
||||
if prompt_feature and completion_feature:
|
||||
return CompletionsDataset(ds, tokenizer, prompt_feature, completion_feature)
|
||||
elif chat_feature:
|
||||
return ChatDataset(ds, tokenizer, chat_key=chat_feature)
|
||||
elif text_feature:
|
||||
return Dataset(ds, tokenizer, text_key=text_feature)
|
||||
else:
|
||||
raise ValueError(
|
||||
"Specify either a prompt and completion feature or a text "
|
||||
"feature for the Hugging Face dataset."
|
||||
"Specify either a prompt and completion feature, a chat feature,"
|
||||
" or a text feature for the Hugging Face dataset."
|
||||
)
|
||||
|
||||
if args.train:
|
||||
train_split = hf_args.get("train_split", "train[:80%]")
|
||||
valid_split = hf_args.get("valid_split", "train[-10%:]")
|
||||
train = create_hf_dataset(split=train_split)
|
||||
valid = create_hf_dataset(split=valid_split)
|
||||
else:
|
||||
train, valid = [], []
|
||||
if args.test:
|
||||
test = create_hf_dataset(split=hf_args.get("test_split"))
|
||||
else:
|
||||
test = []
|
||||
def get_train_and_valid_splits(hf_args, ds_name):
|
||||
text_f = hf_args.get("text_feature", None)
|
||||
prompt_f = hf_args.get("prompt_feature", None)
|
||||
completion_f = hf_args.get("completion_feature", None)
|
||||
chat_f = hf_args.get("chat_feature", None)
|
||||
|
||||
return train, valid, test
|
||||
if args.train:
|
||||
train_split = hf_args.get("train_split", "train[:80%]")
|
||||
valid_split = hf_args.get("valid_split", "train[-10%:]")
|
||||
train = create_hf_dataset(
|
||||
ds_name, text_f, prompt_f, completion_f, chat_f, split=train_split
|
||||
)
|
||||
valid = create_hf_dataset(
|
||||
ds_name, text_f, prompt_f, completion_f, chat_f, split=valid_split
|
||||
)
|
||||
else:
|
||||
train, valid = [], []
|
||||
|
||||
if args.test:
|
||||
test_split = hf_args.get("test_split")
|
||||
test = create_hf_dataset(
|
||||
ds_name, text_f, prompt_f, completion_f, chat_f, split=test_split,
|
||||
)
|
||||
else:
|
||||
test = []
|
||||
|
||||
return train, valid, test
|
||||
|
||||
if args.datasets:
|
||||
dataset_collection = args.hf_datasets
|
||||
else:
|
||||
dataset_collection = {"hf_dataset": args.hf_dataset}
|
||||
|
||||
datasets = []
|
||||
for ds in dataset_collection:
|
||||
hf_args = ds["hf_dataset"]
|
||||
dataset_name = hf_args["name"]
|
||||
print(f"Loading Hugging Face dataset {dataset_name}.")
|
||||
datasets.append(get_splits(hf_args, dataset_name))
|
||||
if len(datsets) == 1:
|
||||
return *datasets
|
||||
|
||||
# Otherwise concatenate them
|
||||
train, valid, test = zip(*datasets)
|
||||
return tuple(map, Concatenate, zip(*datasets))
|
||||
|
||||
|
||||
def load_dataset(args, tokenizer: PreTrainedTokenizer):
|
||||
|
Loading…
Reference in New Issue
Block a user