mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-28 15:08:37 +08:00
Generalize HF datasets to a collection of HF dataasets via datasets
, adds support for custom chat HF datasets (#1088), and fixes (#1087)
This commit is contained in:
parent
3496cbea46
commit
14a75f3f03
@ -34,14 +34,15 @@ class ChatDataset:
|
|||||||
https://platform.openai.com/docs/guides/fine-tuning/example-format
|
https://platform.openai.com/docs/guides/fine-tuning/example-format
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, data: List[Dict[str, str]], tokenizer: PreTrainedTokenizer):
|
def __init__(self, data: List[Dict[str, str]], tokenizer: PreTrainedTokenizer, chat_key: str = "messages"):
|
||||||
self._data = [
|
self._data = [
|
||||||
tokenizer.apply_chat_template(
|
tokenizer.apply_chat_template(
|
||||||
d["messages"],
|
d[chat_key],
|
||||||
tools=d.get("tools", None),
|
tools=d.get("tools", None),
|
||||||
)
|
)
|
||||||
for d in data
|
for d in data
|
||||||
]
|
]
|
||||||
|
self._chat_key = chat_key
|
||||||
|
|
||||||
def __getitem__(self, idx: int):
|
def __getitem__(self, idx: int):
|
||||||
return self._data[idx]
|
return self._data[idx]
|
||||||
@ -84,6 +85,29 @@ class CompletionsDataset:
|
|||||||
return len(self._data)
|
return len(self._data)
|
||||||
|
|
||||||
|
|
||||||
|
class CompletionsDatasetCollection:
|
||||||
|
def __init__(self, data: List[Union[ChatDataset, CompletionsDataset]]):
|
||||||
|
self.collection = data
|
||||||
|
|
||||||
|
def __getitem__(self, idx: int):
|
||||||
|
item = next(self.collection)
|
||||||
|
|
||||||
|
curr_idx = idx
|
||||||
|
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
if (curr_idx + 1) < len(item):
|
||||||
|
return item[curr_idx]
|
||||||
|
else:
|
||||||
|
curr_idx -= len(item)
|
||||||
|
item = next(self.collection)
|
||||||
|
except StopIteration:
|
||||||
|
raise IndexError(idx)
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return sum(map(len, self.collection))
|
||||||
|
|
||||||
|
|
||||||
def create_dataset(
|
def create_dataset(
|
||||||
data,
|
data,
|
||||||
tokenizer: PreTrainedTokenizer,
|
tokenizer: PreTrainedTokenizer,
|
||||||
@ -157,14 +181,14 @@ def load_hf_dataset(
|
|||||||
def load_custom_hf_dataset(args, tokenizer: PreTrainedTokenizer):
|
def load_custom_hf_dataset(args, tokenizer: PreTrainedTokenizer):
|
||||||
import datasets
|
import datasets
|
||||||
|
|
||||||
hf_args = args.hf_dataset
|
def create_hf_dataset(
|
||||||
dataset_name = hf_args["name"]
|
dataset_name,
|
||||||
print(f"Loading Hugging Face dataset {dataset_name}.")
|
text_feature,
|
||||||
text_feature = hf_args.get("text_feature")
|
prompt_feature,
|
||||||
prompt_feature = hf_args.get("prompt_feature")
|
completion_feature,
|
||||||
completion_feature = hf_args.get("completion_feature")
|
chat_feature,
|
||||||
|
split,
|
||||||
def create_hf_dataset(split: str = None):
|
):
|
||||||
ds = datasets.load_dataset(
|
ds = datasets.load_dataset(
|
||||||
dataset_name,
|
dataset_name,
|
||||||
split=split,
|
split=split,
|
||||||
@ -172,27 +196,61 @@ def load_custom_hf_dataset(args, tokenizer: PreTrainedTokenizer):
|
|||||||
)
|
)
|
||||||
if prompt_feature and completion_feature:
|
if prompt_feature and completion_feature:
|
||||||
return CompletionsDataset(ds, tokenizer, prompt_feature, completion_feature)
|
return CompletionsDataset(ds, tokenizer, prompt_feature, completion_feature)
|
||||||
|
elif chat_feature:
|
||||||
|
return ChatDataset(ds, tokenizer, chat_key=chat_feature)
|
||||||
elif text_feature:
|
elif text_feature:
|
||||||
return Dataset(ds, tokenizer, text_key=text_feature)
|
return Dataset(ds, tokenizer, text_key=text_feature)
|
||||||
else:
|
else:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
"Specify either a prompt and completion feature or a text "
|
"Specify either a prompt and completion feature, a chat feature,"
|
||||||
"feature for the Hugging Face dataset."
|
" or a text feature for the Hugging Face dataset."
|
||||||
)
|
)
|
||||||
|
|
||||||
if args.train:
|
def get_train_and_valid_splits(hf_args, ds_name):
|
||||||
train_split = hf_args.get("train_split", "train[:80%]")
|
text_f = hf_args.get("text_feature", None)
|
||||||
valid_split = hf_args.get("valid_split", "train[-10%:]")
|
prompt_f = hf_args.get("prompt_feature", None)
|
||||||
train = create_hf_dataset(split=train_split)
|
completion_f = hf_args.get("completion_feature", None)
|
||||||
valid = create_hf_dataset(split=valid_split)
|
chat_f = hf_args.get("chat_feature", None)
|
||||||
else:
|
|
||||||
train, valid = [], []
|
|
||||||
if args.test:
|
|
||||||
test = create_hf_dataset(split=hf_args.get("test_split"))
|
|
||||||
else:
|
|
||||||
test = []
|
|
||||||
|
|
||||||
return train, valid, test
|
if args.train:
|
||||||
|
train_split = hf_args.get("train_split", "train[:80%]")
|
||||||
|
valid_split = hf_args.get("valid_split", "train[-10%:]")
|
||||||
|
train = create_hf_dataset(
|
||||||
|
ds_name, text_f, prompt_f, completion_f, chat_f, split=train_split
|
||||||
|
)
|
||||||
|
valid = create_hf_dataset(
|
||||||
|
ds_name, text_f, prompt_f, completion_f, chat_f, split=valid_split
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
train, valid = [], []
|
||||||
|
|
||||||
|
if args.test:
|
||||||
|
test_split = hf_args.get("test_split")
|
||||||
|
test = create_hf_dataset(
|
||||||
|
ds_name, text_f, prompt_f, completion_f, chat_f, split=test_split,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
test = []
|
||||||
|
|
||||||
|
return train, valid, test
|
||||||
|
|
||||||
|
if args.datasets:
|
||||||
|
dataset_collection = args.hf_datasets
|
||||||
|
else:
|
||||||
|
dataset_collection = {"hf_dataset": args.hf_dataset}
|
||||||
|
|
||||||
|
datasets = []
|
||||||
|
for ds in dataset_collection:
|
||||||
|
hf_args = ds["hf_dataset"]
|
||||||
|
dataset_name = hf_args["name"]
|
||||||
|
print(f"Loading Hugging Face dataset {dataset_name}.")
|
||||||
|
datasets.append(get_splits(hf_args, dataset_name))
|
||||||
|
if len(datsets) == 1:
|
||||||
|
return *datasets
|
||||||
|
|
||||||
|
# Otherwise concatenate them
|
||||||
|
train, valid, test = zip(*datasets)
|
||||||
|
return tuple(map, Concatenate, zip(*datasets))
|
||||||
|
|
||||||
|
|
||||||
def load_dataset(args, tokenizer: PreTrainedTokenizer):
|
def load_dataset(args, tokenizer: PreTrainedTokenizer):
|
||||||
|
Loading…
Reference in New Issue
Block a user