mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-09-01 12:49:50 +08:00
simplified ResNet, expanded README with throughput and performance
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
import argparse
|
||||
import time
|
||||
import resnet
|
||||
import numpy as np
|
||||
import mlx.nn as nn
|
||||
import mlx.core as mx
|
||||
import mlx.optimizers as optim
|
||||
@@ -14,11 +14,11 @@ parser.add_argument(
|
||||
default="resnet20",
|
||||
help="model architecture [resnet20, resnet32, resnet44, resnet56, resnet110, resnet1202]",
|
||||
)
|
||||
parser.add_argument("--batch_size", type=int, default=128, help="batch size")
|
||||
parser.add_argument("--batch_size", type=int, default=256, help="batch size")
|
||||
parser.add_argument("--epochs", type=int, default=100, help="number of epochs")
|
||||
parser.add_argument("--lr", type=float, default=1e-3, help="learning rate")
|
||||
parser.add_argument("--seed", type=int, default=0, help="random seed")
|
||||
parser.add_argument("--cpu_only", action="store_true", help="use cpu only")
|
||||
parser.add_argument("--cpu", action="store_true", help="use cpu only")
|
||||
|
||||
|
||||
def loss_fn(model, inp, tgt):
|
||||
@@ -40,27 +40,30 @@ def train_epoch(model, train_iter, optimizer, epoch):
|
||||
|
||||
losses = []
|
||||
accs = []
|
||||
samples_per_sec = []
|
||||
|
||||
for batch_counter, batch in enumerate(train_iter):
|
||||
x = mx.array(batch["image"])
|
||||
y = mx.array(batch["label"])
|
||||
tic = time.perf_counter()
|
||||
(loss, acc), grads = train_step_fn(model, x, y)
|
||||
optimizer.update(model, grads)
|
||||
mx.eval(model.parameters(), optimizer.state)
|
||||
|
||||
toc = time.perf_counter()
|
||||
loss_value = loss.item()
|
||||
acc_value = acc.item()
|
||||
losses.append(loss_value)
|
||||
accs.append(acc_value)
|
||||
|
||||
samples_per_sec.append(x.shape[0] / (toc - tic))
|
||||
if batch_counter % 10 == 0:
|
||||
print(
|
||||
f"Epoch {epoch:02d}[{batch_counter:03d}]: tr_loss {loss_value:.3f}, tr_acc {acc_value:.3f}"
|
||||
f"Epoch {epoch:02d} [{batch_counter:03d}] | tr_loss {loss_value:.3f} | tr_acc {acc_value:.3f} | Throughput: {x.shape[0] / (toc - tic):.2f} images/second"
|
||||
)
|
||||
|
||||
mean_tr_loss = np.mean(np.array(losses))
|
||||
mean_tr_acc = np.mean(np.array(accs))
|
||||
return mean_tr_loss, mean_tr_acc
|
||||
mean_tr_loss = mx.mean(mx.array(losses))
|
||||
mean_tr_acc = mx.mean(mx.array(accs))
|
||||
samples_per_sec = mx.mean(mx.array(samples_per_sec))
|
||||
return mean_tr_loss, mean_tr_acc, samples_per_sec
|
||||
|
||||
|
||||
def test_epoch(model, test_iter, epoch):
|
||||
@@ -71,13 +74,11 @@ def test_epoch(model, test_iter, epoch):
|
||||
acc = eval_fn(model, x, y)
|
||||
acc_value = acc.item()
|
||||
accs.append(acc_value)
|
||||
mean_acc = np.mean(np.array(accs))
|
||||
|
||||
mean_acc = mx.mean(mx.array(accs))
|
||||
return mean_acc
|
||||
|
||||
|
||||
def main(args):
|
||||
np.random.seed(args.seed)
|
||||
mx.random.seed(args.seed)
|
||||
|
||||
model = resnet.__dict__[args.arch]()
|
||||
@@ -87,22 +88,24 @@ def main(args):
|
||||
|
||||
optimizer = optim.Adam(learning_rate=args.lr)
|
||||
|
||||
train_data, test_data = get_cifar10(args.batch_size)
|
||||
for epoch in range(args.epochs):
|
||||
# get data every epoch
|
||||
# or set .repeat() on the data stream appropriately
|
||||
train_data, test_data, tr_batches, _ = get_cifar10(args.batch_size)
|
||||
|
||||
epoch_tr_loss, epoch_tr_acc = train_epoch(model, train_data, optimizer, epoch)
|
||||
epoch_tr_loss, epoch_tr_acc, train_throughput = train_epoch(
|
||||
model, train_data, optimizer, epoch
|
||||
)
|
||||
print(
|
||||
f"Epoch {epoch}: avg. tr_loss {epoch_tr_loss:.3f}, avg. tr_acc {epoch_tr_acc:.3f}"
|
||||
f"Epoch: {epoch} | avg. tr_loss {epoch_tr_loss.item():.3f} | avg. tr_acc {epoch_tr_acc.item():.3f} | Train Throughput: {train_throughput.item():.2f} images/sec"
|
||||
)
|
||||
|
||||
epoch_test_acc = test_epoch(model, test_data, epoch)
|
||||
print(f"Epoch {epoch}: Test_acc {epoch_test_acc:.3f}")
|
||||
print(f"Epoch: {epoch} | test_acc {epoch_test_acc.item():.3f}")
|
||||
|
||||
train_data.reset()
|
||||
test_data.reset()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parser.parse_args()
|
||||
if args.cpu_only:
|
||||
if args.cpu:
|
||||
mx.set_default_device(mx.cpu)
|
||||
main(args)
|
||||
|
Reference in New Issue
Block a user