simplified ResNet, expanded README with throughput and performance

This commit is contained in:
Sarthak Yadav 2023-12-14 09:05:04 +01:00
parent 2439333a57
commit 15a6c155a8
5 changed files with 56 additions and 36 deletions

View File

@ -1,11 +1,10 @@
# CIFAR and ResNets
* This example shows how to run ResNets on CIFAR10 dataset, in accordance with the original [paper](https://arxiv.org/abs/1512.03385).
* Also illustrates how to use `mlx-data` to download and load the dataset.
An example of training a ResNet on CIFAR-10 with MLX. Several ResNet configurations in accordance with the original [paper](https://arxiv.org/abs/1512.03385) are available. Also illustrates how to use `mlx-data` to download and load the dataset.
## Pre-requisites
* Install the dependencies:
Install the dependencies:
```
pip install -r requirements.txt
@ -21,7 +20,7 @@ python main.py
By default the example runs on the GPU. To run on the CPU, use:
```
python main.py --cpu_only
python main.py --cpu
```
For all available options, run:
@ -29,3 +28,24 @@ For all available options, run:
```
python main.py --help
```
## Throughput
On the tested device (M1 Macbook Pro, 16GB RAM), I get the following throughput with a `batch_size=256`:
```
Epoch: 0 | avg. tr_loss 2.074 | avg. tr_acc 0.216 | Train Throughput: 415.39 images/sec
```
When training on just the CPU (with the `--cpu` argument), the throughput is significantly lower (almost 30x!):
```
Epoch: 0 | avg. tr_loss 2.074 | avg. tr_acc 0.216 | Train Throughput: 13.5 images/sec
```
## Results
After training for 100 epochs, the following results were observed:
```
Epoch: 99 | avg. tr_loss 0.320 | avg. tr_acc 0.888 | Train Throughput: 416.77 images/sec
Epoch: 99 | test_acc 0.807
```
At the time of writing, `mlx` doesn't have in-built `schedulers`, nor a `BatchNorm` layer. We'll revisit this example for exact reproduction once these features are added.

View File

@ -36,4 +36,4 @@ def get_cifar10(batch_size, root=None):
num_tr_steps_per_epoch = num_tr_samples // batch_size
num_test_steps_per_epoch = num_test_samples // batch_size
return tr_iter, test_iter, num_tr_steps_per_epoch, num_test_steps_per_epoch
return tr_iter, test_iter

View File

@ -1,6 +1,6 @@
import argparse
import time
import resnet
import numpy as np
import mlx.nn as nn
import mlx.core as mx
import mlx.optimizers as optim
@ -14,11 +14,11 @@ parser.add_argument(
default="resnet20",
help="model architecture [resnet20, resnet32, resnet44, resnet56, resnet110, resnet1202]",
)
parser.add_argument("--batch_size", type=int, default=128, help="batch size")
parser.add_argument("--batch_size", type=int, default=256, help="batch size")
parser.add_argument("--epochs", type=int, default=100, help="number of epochs")
parser.add_argument("--lr", type=float, default=1e-3, help="learning rate")
parser.add_argument("--seed", type=int, default=0, help="random seed")
parser.add_argument("--cpu_only", action="store_true", help="use cpu only")
parser.add_argument("--cpu", action="store_true", help="use cpu only")
def loss_fn(model, inp, tgt):
@ -40,27 +40,30 @@ def train_epoch(model, train_iter, optimizer, epoch):
losses = []
accs = []
samples_per_sec = []
for batch_counter, batch in enumerate(train_iter):
x = mx.array(batch["image"])
y = mx.array(batch["label"])
tic = time.perf_counter()
(loss, acc), grads = train_step_fn(model, x, y)
optimizer.update(model, grads)
mx.eval(model.parameters(), optimizer.state)
toc = time.perf_counter()
loss_value = loss.item()
acc_value = acc.item()
losses.append(loss_value)
accs.append(acc_value)
samples_per_sec.append(x.shape[0] / (toc - tic))
if batch_counter % 10 == 0:
print(
f"Epoch {epoch:02d}[{batch_counter:03d}]: tr_loss {loss_value:.3f}, tr_acc {acc_value:.3f}"
f"Epoch {epoch:02d} [{batch_counter:03d}] | tr_loss {loss_value:.3f} | tr_acc {acc_value:.3f} | Throughput: {x.shape[0] / (toc - tic):.2f} images/second"
)
mean_tr_loss = np.mean(np.array(losses))
mean_tr_acc = np.mean(np.array(accs))
return mean_tr_loss, mean_tr_acc
mean_tr_loss = mx.mean(mx.array(losses))
mean_tr_acc = mx.mean(mx.array(accs))
samples_per_sec = mx.mean(mx.array(samples_per_sec))
return mean_tr_loss, mean_tr_acc, samples_per_sec
def test_epoch(model, test_iter, epoch):
@ -71,13 +74,11 @@ def test_epoch(model, test_iter, epoch):
acc = eval_fn(model, x, y)
acc_value = acc.item()
accs.append(acc_value)
mean_acc = np.mean(np.array(accs))
mean_acc = mx.mean(mx.array(accs))
return mean_acc
def main(args):
np.random.seed(args.seed)
mx.random.seed(args.seed)
model = resnet.__dict__[args.arch]()
@ -87,22 +88,24 @@ def main(args):
optimizer = optim.Adam(learning_rate=args.lr)
train_data, test_data = get_cifar10(args.batch_size)
for epoch in range(args.epochs):
# get data every epoch
# or set .repeat() on the data stream appropriately
train_data, test_data, tr_batches, _ = get_cifar10(args.batch_size)
epoch_tr_loss, epoch_tr_acc = train_epoch(model, train_data, optimizer, epoch)
epoch_tr_loss, epoch_tr_acc, train_throughput = train_epoch(
model, train_data, optimizer, epoch
)
print(
f"Epoch {epoch}: avg. tr_loss {epoch_tr_loss:.3f}, avg. tr_acc {epoch_tr_acc:.3f}"
f"Epoch: {epoch} | avg. tr_loss {epoch_tr_loss.item():.3f} | avg. tr_acc {epoch_tr_acc.item():.3f} | Train Throughput: {train_throughput.item():.2f} images/sec"
)
epoch_test_acc = test_epoch(model, test_data, epoch)
print(f"Epoch {epoch}: Test_acc {epoch_test_acc:.3f}")
print(f"Epoch: {epoch} | test_acc {epoch_test_acc.item():.3f}")
train_data.reset()
test_data.reset()
if __name__ == "__main__":
args = parser.parse_args()
if args.cpu_only:
if args.cpu:
mx.set_default_device(mx.cpu)
main(args)

View File

@ -1,3 +1,2 @@
mlx
mlx-data
numpy
mlx-data

View File

@ -38,7 +38,6 @@ class ShortcutA(nn.Module):
class Block(nn.Module):
expansion = 1
"""
Implements a ResNet block with two convolutional layers and a skip connection.
As per the paper, CIFAR-10 uses Shortcut type-A skip connections. (See paper for details)
@ -57,7 +56,7 @@ class Block(nn.Module):
)
self.bn2 = nn.LayerNorm(dims)
if stride != 1 or in_dims != dims:
if stride != 1:
self.shortcut = ShortcutA(dims)
else:
self.shortcut = None
@ -83,20 +82,19 @@ class ResNet(nn.Module):
super().__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.LayerNorm(16)
self.in_dims = 16
self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2)
self.layer1 = self._make_layer(block, 16, 16, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 16, 32, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 32, 64, num_blocks[2], stride=2)
self.linear = nn.Linear(64, num_classes)
def _make_layer(self, block, dims, num_blocks, stride):
def _make_layer(self, block, in_dims, dims, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_dims, dims, stride))
self.in_dims = dims * block.expansion
layers.append(block(in_dims, dims, stride))
in_dims = dims
return nn.Sequential(*layers)
def num_params(self):