fix args, update README, remove extra files

This commit is contained in:
Awni Hannun 2023-12-14 08:18:01 -08:00
parent a8d4149147
commit 1613e608a9
4 changed files with 38 additions and 97 deletions

View File

@ -1,24 +1,48 @@
# Phi-2
Phi-2 is a 2.7B parameter model released by Microsoft and trained on a mixture of GPT-4 outputs and clean web-text.
Its performance theoretically rivals much, much stronger models.
Phi-2 is a 2.7B parameter model released by Microsoft[^1] and trained on a mixture
of GPT-4 outputs and clean web-text. Its performance rivals
much, much stronger models.
## Downloading and Converting Weights
## Setup
To download and convert the model:
Download and convert the model:
```sh
python phi2/convert.py
python convert.py
```
That will fill in `weights/phi-2.npz`.
which will make a file `weights.npz`.
## Running the Model
## Generate
🚧 (Not yet done) To run the model:
To generate text with the default prompt:
```sh
python phi2/generate.py
python model.py
```
Layer-by-layer forward pass outputs are currently shown in the outputs.txt files.
Should give the output:
```
Answer: Mathematics is like a lighthouse that guides us through the darkness of
uncertainty. Just as a lighthouse emits a steady beam of light, mathematics
provides us with a clear path to navigate through complex problems. It
illuminates our understanding and helps us make sense of the world around us.
Exercise 2:
Compare and contrast the role of logic in mathematics and the role of a compass
in navigation.
Answer: Logic in mathematics is like a compass in navigation. It helps
```
To use your own prompt:
```sh
python model.py --prompt <your prompt here> --max_tokens <max_token>
```
[^1]: For more details on the model see the [blog post](
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/)
and the [Hugging Face repo](https://huggingface.co/microsoft/phi-2)

View File

@ -1,23 +0,0 @@
from transformers import AutoModelForCausalLM, AutoTokenizer
if __name__ == "__main__":
model = AutoModelForCausalLM.from_pretrained(
"microsoft/phi-2", torch_dtype="auto", trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
inputs = tokenizer(
'''def print_prime(n):
"""
Print all primes between 1 and n
"""''',
return_tensors="pt",
return_attention_mask=False,
)
print(model(**inputs))
# outputs = model.generate(**inputs, max_length=200)
# text = tokenizer.batch_decode(outputs)[0]
# print(text)

View File

@ -203,11 +203,14 @@ if __name__ == "__main__":
prompt = mx.array(prompt)
print("[INFO] Generating with Phi-2...", flush=True)
print(args.prompt, end="", flush=True)
tokens = []
for token, _ in zip(generate(prompt, model), range(args.max_tokens)):
tokens.append(token)
if (len(tokens) % args.tokens_per_eval) == 0:
if (len(tokens) % 10) == 0:
mx.eval(tokens)
s = tokenizer.decode([t.item() for t in tokens])
print(s, end="", flush=True)

View File

@ -1,63 +0,0 @@
(HF) Output of Embeddings
tensor([[[-0.0353, 0.0045, 0.0208, ..., -0.0117, 0.0041, 0.0075],
[-0.0172, 0.0236, -0.0051, ..., 0.0141, 0.0115, 0.0058],
[-0.0148, 0.0043, -0.0252, ..., 0.0179, 0.0025, -0.0008],
...,
[ 0.0003, 0.0051, 0.0002, ..., 0.0043, 0.0075, 0.0049],
[-0.0110, 0.0472, 0.0030, ..., 0.0098, -0.0075, 0.0146],
[-0.0085, -0.0219, -0.0016, ..., -0.0059, 0.0109, -0.0016]]],
device='cuda:0', dtype=torch.float16, grad_fn=<EmbeddingBackward0>)
(MLX) Output of Embeddings
array([[[-0.0352783, 0.00445175, 0.020813, ..., -0.0117188, 0.00411606, 0.00748444],
[-0.0171509, 0.0236053, -0.00508881, ..., 0.0141144, 0.0115204, 0.00582504],
[-0.0147858, 0.00426102, -0.0252075, ..., 0.0179443, 0.0024662, -0.00076437],
...,
[0.000337124, 0.00508499, 0.000193119, ..., 0.00427628, 0.00753403, 0.00492477],
[-0.0110092, 0.0472107, 0.00295448, ..., 0.00982666, -0.00747681, 0.0145721],
[-0.00852203, -0.0218964, -0.00161839, ..., -0.00592422, 0.0108643, -0.00162697]]], dtype=float16)
(HF) Output of First Attention Layer
tensor([[[-0.2000, 0.4849, 0.9863, ..., -0.2209, 0.1355, 0.3469],
[ 0.4922, -0.3865, 0.8428, ..., 0.5894, -0.0069, -0.5278],
[ 0.0902, 0.1028, 0.6826, ..., 0.1394, -0.8145, -0.1880],
...,
[ 0.2380, 0.0555, -0.3005, ..., 0.0372, -0.0895, 0.0255],
[ 0.2512, 0.1949, 0.3401, ..., 0.3625, -0.3103, -0.1064],
[-0.0905, 0.0665, 0.5210, ..., -0.0767, -0.2460, -0.1449]]],
device='cuda:0', dtype=torch.float16, grad_fn=<AddBackward0>)
torch.Size([1, 23, 2560])
(MLX) Output of First Attention Layer
array([[[-0.199973, 0.485224, 0.987237, ..., -0.220847, 0.13511, 0.346074],
[0.44883, -0.271683, 0.877478, ..., 0.653217, -0.0929724, -0.711176],
[-0.233398, 5.7824e-05, 0.435001, ..., 0.0504494, -0.623998, -0.438785],
...,
[0.123587, -0.237459, -0.447518, ..., 0.0653363, -0.0767153, -0.341505],
[0.187798, 0.331209, 0.0827338, ..., 0.529453, -0.582141, -0.165316],
[-0.413614, 0.134572, 0.685769, ..., 0.0796088, 0.0217719, -0.118885]]], dtype=float32)
[1, 23, 2560]
(HF) Overall Output of Inputs:
tensor([[[ 6.4688, 5.1016, 1.9658, ..., -2.9043, -2.9043, -2.9043],
[ 5.2188, 6.4414, 5.1914, ..., -0.1852, -0.1862, -0.1866],
[ 4.3516, 5.3281, 5.9922, ..., -0.3689, -0.3699, -0.3696],
...,
[10.4141, 11.7031, 12.5859, ..., 0.7778, 0.7769, 0.7754],
[10.7188, 11.7891, 13.3125, ..., 1.6123, 1.6113, 1.6104],
[10.8047, 12.0234, 12.4375, ..., 0.2321, 0.2314, 0.2317]]],
(MLX) Overall Output of Inputs:
array([[[6.46632, 5.10102, 1.96306, ..., -2.90427, -2.90341, -2.90392],
[4.5092, 5.90938, 4.98036, ..., -0.411165, -0.412062, -0.412547],
[4.34246, 5.7794, 6.13245, ..., -0.40106, -0.402052, -0.401838],
...,
[6.61827, 10.4022, 12.1672, ..., 0.602787, 0.602138, 0.600666],
[7.96546, 12.9569, 14.7947, ..., -0.347764, -0.348587, -0.34937],
[8.22272, 10.6631, 11.5968, ..., -1.12037, -1.12025, -1.12152]]], dtype=float32)