From 195bec2fa3fbde91ceedbf79a7aaa6c2d23148b3 Mon Sep 17 00:00:00 2001
From: Anchen
Date: Mon, 15 Jan 2024 07:18:14 -0800
Subject: [PATCH] feat(mlx_lm): add mixtral support in mlx_lm (#318)
* feat: add mixtral support in mlx_lm
* chore: update doc
---
llms/README.md | 4 +-
llms/mlx_lm/convert.py | 11 +-
llms/mlx_lm/models/mixtral.py | 247 ++++++++++++++++++++++++++++++++++
llms/mlx_lm/utils.py | 13 +-
4 files changed, 266 insertions(+), 9 deletions(-)
create mode 100644 llms/mlx_lm/models/mixtral.py
diff --git a/llms/README.md b/llms/README.md
index fd33e98a..40dbc067 100644
--- a/llms/README.md
+++ b/llms/README.md
@@ -101,10 +101,12 @@ Here are a few examples of Hugging Face models that work with this example:
- [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct)
- [01-ai/Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat)
- [microsoft/phi-2](https://huggingface.co/microsoft/phi-2)
+- [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
Most
[Mistral](https://huggingface.co/models?library=transformers,safetensors&other=mistral&sort=trending),
[Llama](https://huggingface.co/models?library=transformers,safetensors&other=llama&sort=trending),
-and
[Phi-2](https://huggingface.co/models?library=transformers,safetensors&other=phi&sort=trending)
+and
+[Mixtral](https://huggingface.co/models?library=transformers,safetensors&other=mixtral&sort=trending)
style models should work out of the box.
diff --git a/llms/mlx_lm/convert.py b/llms/mlx_lm/convert.py
index 17c17848..91a0aa42 100644
--- a/llms/mlx_lm/convert.py
+++ b/llms/mlx_lm/convert.py
@@ -10,7 +10,7 @@ import mlx.nn as nn
import transformers
from mlx.utils import tree_flatten
-from .utils import get_model_path, load
+from .utils import get_model_path, linear_class_predicate, load
MAX_FILE_SIZE_GB = 15
@@ -94,11 +94,10 @@ def quantize_model(
model, _ = load(hf_path)
model.load_weights(list(weights.items()))
- nn.QuantizedLinear.quantize_module(model, q_group_size, q_bits)
- quantized_config["quantization"] = {
- "group_size": q_group_size,
- "bits": q_bits,
- }
+ nn.QuantizedLinear.quantize_module(
+ model, q_group_size, q_bits, linear_class_predicate=linear_class_predicate
+ )
+ quantized_config["quantization"] = {"group_size": q_group_size, "bits": q_bits}
quantized_weights = dict(tree_flatten(model.parameters()))
return quantized_weights, quantized_config
diff --git a/llms/mlx_lm/models/mixtral.py b/llms/mlx_lm/models/mixtral.py
new file mode 100644
index 00000000..d35900cf
--- /dev/null
+++ b/llms/mlx_lm/models/mixtral.py
@@ -0,0 +1,247 @@
+from dataclasses import dataclass
+from typing import Dict, Optional, Tuple, Union
+
+import mlx.core as mx
+import mlx.nn as nn
+
+from .base import BaseModelArgs
+
+
+@dataclass
+class ModelArgs(BaseModelArgs):
+ vocab_size: int = 32000
+ max_position_embeddings: int = 4096 * 32
+ hidden_size: int = 4096
+ intermediate_size: int = 14336
+ num_hidden_layers: int = 32
+ num_attention_heads: int = 32
+ num_experts_per_tok: int = 2
+ num_key_value_heads: int = 8
+ num_local_experts: int = 8
+ rms_norm_eps: float = 1e-5
+ vocab_size: int
+ rope_theta: float = 1e6
+ rope_traditional: bool = False
+ model_type: str = None
+ rope_scaling: Optional[Dict[str, Union[float, str]]] = None
+
+ def __post_init__(self):
+ if self.num_key_value_heads is None:
+ self.num_key_value_heads = self.num_attention_heads
+
+
+class RMSNorm(nn.Module):
+ def __init__(self, dims: int, eps: float = 1e-5):
+ super().__init__()
+ self.weight = mx.ones((dims,))
+ self.eps = eps
+
+ def _norm(self, x):
+ return x * mx.rsqrt(x.square().mean(-1, keepdims=True) + self.eps)
+
+ def __call__(self, x):
+ output = self._norm(x.astype(mx.float32)).astype(x.dtype)
+ return self.weight * output
+
+
+class MixtralAttention(nn.Module):
+ def __init__(self, args: ModelArgs):
+ super().__init__()
+ self.hidden_size = args.hidden_size
+ self.num_heads = args.num_attention_heads
+ self.head_dim = self.hidden_size // self.num_heads
+ self.num_key_value_heads = args.num_key_value_heads
+ self.max_position_embeddings = args.max_position_embeddings
+ self.rope_theta = args.rope_theta
+
+ self.repeats = self.num_heads // self.num_key_value_heads
+
+ self.scale = self.head_dim**-0.5
+
+ self.q_proj = nn.Linear(
+ self.hidden_size, self.num_heads * self.head_dim, bias=False
+ )
+ self.k_proj = nn.Linear(
+ self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
+ )
+ self.v_proj = nn.Linear(
+ self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
+ )
+ self.o_proj = nn.Linear(
+ self.num_heads * self.head_dim, self.hidden_size, bias=False
+ )
+
+ self.rope = nn.RoPE(
+ self.head_dim,
+ traditional=args.rope_traditional,
+ base=args.rope_theta,
+ )
+
+ def __call__(
+ self,
+ x: mx.array,
+ mask: Optional[mx.array] = None,
+ cache: Optional[Tuple[mx.array, mx.array]] = None,
+ ) -> mx.array:
+ B, L, D = x.shape
+
+ queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
+
+ # Prepare the queries, keys and values for the attention computation
+ queries = queries.reshape(B, L, self.num_heads, -1).transpose(0, 2, 1, 3)
+ keys = keys.reshape(B, L, self.num_key_value_heads, -1).transpose(0, 2, 1, 3)
+ values = values.reshape(B, L, self.num_key_value_heads, -1).transpose(
+ 0, 2, 1, 3
+ )
+
+ def repeat(a):
+ a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2)
+ return a.reshape([B, self.num_heads, L, -1])
+
+ if self.repeats > 1:
+ keys, values = map(repeat, (keys, values))
+
+ if cache is not None:
+ key_cache, value_cache = cache
+ queries = self.rope(queries, offset=key_cache.shape[2])
+ keys = self.rope(keys, offset=key_cache.shape[2])
+ keys = mx.concatenate([key_cache, keys], axis=2)
+ values = mx.concatenate([value_cache, values], axis=2)
+ else:
+ queries = self.rope(queries)
+ keys = self.rope(keys)
+
+ scores = (queries * self.scale) @ keys.transpose(0, 1, 3, 2)
+ if mask is not None:
+ scores += mask
+ scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
+ output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
+ return self.o_proj(output), (keys, values)
+
+
+class MixtralBLockSparseTop2MLP(nn.Module):
+ def __init__(self, args: ModelArgs):
+ super().__init__()
+ self.ffn_dim = args.intermediate_size
+ self.hidden_dim = args.hidden_size
+
+ self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
+ self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
+ self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
+
+ self.act_fn = nn.silu
+
+ def __call__(self, x: mx.array) -> mx.array:
+ current_hidden_states = self.act_fn(self.w1(x)) * self.w3(x)
+ current_hidden_states = self.w2(current_hidden_states)
+ return current_hidden_states
+
+
+class MixtralSparseMoeBlock(nn.Module):
+ def __init__(self, args: ModelArgs):
+ super().__init__()
+ self.hidden_dim = args.hidden_size
+ self.ffn_dim = args.intermediate_size
+ self.num_experts = args.num_local_experts
+ self.num_experts_per_tok = args.num_experts_per_tok
+
+ # gating
+ self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
+
+ self.experts = [
+ MixtralBLockSparseTop2MLP(args=args) for _ in range(self.num_experts)
+ ]
+
+ def __call__(self, x: mx.array) -> mx.array:
+ ne = self.num_experts_per_tok
+ orig_shape = x.shape
+ x = x.reshape(-1, x.shape[-1])
+
+ gates = self.gate(x)
+ inds = mx.argpartition(-gates, kth=ne, axis=-1)[:, :ne]
+ scores = mx.softmax(
+ mx.take_along_axis(gates, inds, axis=-1).astype(mx.float32),
+ axis=-1,
+ ).astype(gates.dtype)
+
+ y = []
+ for xt, st, it in zip(x, scores, inds.tolist()):
+ yt = mx.concatenate([self.experts[e](xt)[:, None] for e in it], axis=-1)
+ yt = (yt * st).sum(axis=-1)
+ y.append(yt[None, :])
+ y = mx.concatenate(y)
+
+ return y.reshape(orig_shape)
+
+
+class MixtralDecoderLayer(nn.Module):
+ def __init__(self, args: ModelArgs):
+ super().__init__()
+ self.hidden_size = args.hidden_size
+
+ self.self_attn = MixtralAttention(args)
+
+ self.block_sparse_moe = MixtralSparseMoeBlock(args)
+ self.input_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
+ self.post_attention_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
+
+ def __call__(
+ self,
+ x: mx.array,
+ mask: Optional[mx.array] = None,
+ cache: Optional[Tuple[mx.array, mx.array]] = None,
+ ) -> mx.array:
+ r, cache = self.self_attn(self.input_layernorm(x), mask, cache)
+ h = x + r
+ r = self.block_sparse_moe(self.post_attention_layernorm(h))
+ out = h + r
+ return out, cache
+
+
+class MixtralModel(nn.Module):
+ def __init__(self, args: ModelArgs):
+ super().__init__()
+ self.vocab_size = args.vocab_size
+ self.num_hidden_layers = args.num_hidden_layers
+
+ self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
+ self.layers = [
+ MixtralDecoderLayer(args=args) for _ in range(args.num_hidden_layers)
+ ]
+ self.norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
+
+ def __call__(
+ self,
+ inputs: mx.array,
+ cache=None,
+ ):
+ h = self.embed_tokens(inputs)
+
+ mask = None
+ T = h.shape[1]
+ if T > 1:
+ mask = nn.MultiHeadAttention.create_additive_causal_mask(T)
+ mask = mask.astype(h.dtype)
+
+ if cache is None:
+ cache = [None] * len(self.layers)
+
+ for e, layer in enumerate(self.layers):
+ h, cache[e] = layer(h, mask, cache[e])
+
+ return self.norm(h[:, T - 1 : T, :]), cache
+
+
+class Model(nn.Module):
+ def __init__(self, args: ModelArgs):
+ super().__init__()
+ self.model = MixtralModel(args)
+ self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
+
+ def __call__(
+ self,
+ inputs: mx.array,
+ cache=None,
+ ):
+ out, cache = self.model(inputs, cache)
+ return self.lm_head(out), cache
diff --git a/llms/mlx_lm/utils.py b/llms/mlx_lm/utils.py
index aa464a6e..402f0a9f 100644
--- a/llms/mlx_lm/utils.py
+++ b/llms/mlx_lm/utils.py
@@ -10,16 +10,21 @@ from huggingface_hub import snapshot_download
from transformers import AutoTokenizer, PreTrainedTokenizer
# Local imports
-from .models import llama, phi2
+from .models import llama, mixtral, phi2
from .models.base import BaseModelArgs
# Constants
MODEL_MAPPING = {
"llama": llama,
"mistral": llama, # mistral is compatible with llama
+ "mixtral": mixtral,
"phi": phi2,
}
+linear_class_predicate = (
+ lambda m: isinstance(m, nn.Linear) and m.weight.shape[0] % 32 == 0
+) # TODO remove this once we support quantization for non-multiples of 32
+
def _get_classes(config: dict):
"""
@@ -171,7 +176,11 @@ def load(path_or_hf_repo: str) -> Tuple[nn.Module, PreTrainedTokenizer]:
model = model_class(model_args)
if quantization is not None:
- nn.QuantizedLinear.quantize_module(model, **quantization)
+ nn.QuantizedLinear.quantize_module(
+ model,
+ **quantization,
+ linear_class_predicate=linear_class_predicate,
+ )
model.load_weights(list(weights.items()))