feat(mlx_lm): add mixtral support in mlx_lm (#318)

* feat: add mixtral support in mlx_lm

* chore: update doc
This commit is contained in:
Anchen 2024-01-15 07:18:14 -08:00 committed by GitHub
parent 19b6167d81
commit 195bec2fa3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 266 additions and 9 deletions

View File

@ -101,10 +101,12 @@ Here are a few examples of Hugging Face models that work with this example:
- [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct)
- [01-ai/Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat)
- [microsoft/phi-2](https://huggingface.co/microsoft/phi-2)
- [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
Most
[Mistral](https://huggingface.co/models?library=transformers,safetensors&other=mistral&sort=trending),
[Llama](https://huggingface.co/models?library=transformers,safetensors&other=llama&sort=trending),
and
[Phi-2](https://huggingface.co/models?library=transformers,safetensors&other=phi&sort=trending)
and
[Mixtral](https://huggingface.co/models?library=transformers,safetensors&other=mixtral&sort=trending)
style models should work out of the box.

View File

@ -10,7 +10,7 @@ import mlx.nn as nn
import transformers
from mlx.utils import tree_flatten
from .utils import get_model_path, load
from .utils import get_model_path, linear_class_predicate, load
MAX_FILE_SIZE_GB = 15
@ -94,11 +94,10 @@ def quantize_model(
model, _ = load(hf_path)
model.load_weights(list(weights.items()))
nn.QuantizedLinear.quantize_module(model, q_group_size, q_bits)
quantized_config["quantization"] = {
"group_size": q_group_size,
"bits": q_bits,
}
nn.QuantizedLinear.quantize_module(
model, q_group_size, q_bits, linear_class_predicate=linear_class_predicate
)
quantized_config["quantization"] = {"group_size": q_group_size, "bits": q_bits}
quantized_weights = dict(tree_flatten(model.parameters()))
return quantized_weights, quantized_config

View File

@ -0,0 +1,247 @@
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs
@dataclass
class ModelArgs(BaseModelArgs):
vocab_size: int = 32000
max_position_embeddings: int = 4096 * 32
hidden_size: int = 4096
intermediate_size: int = 14336
num_hidden_layers: int = 32
num_attention_heads: int = 32
num_experts_per_tok: int = 2
num_key_value_heads: int = 8
num_local_experts: int = 8
rms_norm_eps: float = 1e-5
vocab_size: int
rope_theta: float = 1e6
rope_traditional: bool = False
model_type: str = None
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
def __post_init__(self):
if self.num_key_value_heads is None:
self.num_key_value_heads = self.num_attention_heads
class RMSNorm(nn.Module):
def __init__(self, dims: int, eps: float = 1e-5):
super().__init__()
self.weight = mx.ones((dims,))
self.eps = eps
def _norm(self, x):
return x * mx.rsqrt(x.square().mean(-1, keepdims=True) + self.eps)
def __call__(self, x):
output = self._norm(x.astype(mx.float32)).astype(x.dtype)
return self.weight * output
class MixtralAttention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.hidden_size = args.hidden_size
self.num_heads = args.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = args.num_key_value_heads
self.max_position_embeddings = args.max_position_embeddings
self.rope_theta = args.rope_theta
self.repeats = self.num_heads // self.num_key_value_heads
self.scale = self.head_dim**-0.5
self.q_proj = nn.Linear(
self.hidden_size, self.num_heads * self.head_dim, bias=False
)
self.k_proj = nn.Linear(
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
)
self.v_proj = nn.Linear(
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
)
self.o_proj = nn.Linear(
self.num_heads * self.head_dim, self.hidden_size, bias=False
)
self.rope = nn.RoPE(
self.head_dim,
traditional=args.rope_traditional,
base=args.rope_theta,
)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
B, L, D = x.shape
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, self.num_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, self.num_key_value_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.num_key_value_heads, -1).transpose(
0, 2, 1, 3
)
def repeat(a):
a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2)
return a.reshape([B, self.num_heads, L, -1])
if self.repeats > 1:
keys, values = map(repeat, (keys, values))
if cache is not None:
key_cache, value_cache = cache
queries = self.rope(queries, offset=key_cache.shape[2])
keys = self.rope(keys, offset=key_cache.shape[2])
keys = mx.concatenate([key_cache, keys], axis=2)
values = mx.concatenate([value_cache, values], axis=2)
else:
queries = self.rope(queries)
keys = self.rope(keys)
scores = (queries * self.scale) @ keys.transpose(0, 1, 3, 2)
if mask is not None:
scores += mask
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.o_proj(output), (keys, values)
class MixtralBLockSparseTop2MLP(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.ffn_dim = args.intermediate_size
self.hidden_dim = args.hidden_size
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
self.act_fn = nn.silu
def __call__(self, x: mx.array) -> mx.array:
current_hidden_states = self.act_fn(self.w1(x)) * self.w3(x)
current_hidden_states = self.w2(current_hidden_states)
return current_hidden_states
class MixtralSparseMoeBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.hidden_dim = args.hidden_size
self.ffn_dim = args.intermediate_size
self.num_experts = args.num_local_experts
self.num_experts_per_tok = args.num_experts_per_tok
# gating
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
self.experts = [
MixtralBLockSparseTop2MLP(args=args) for _ in range(self.num_experts)
]
def __call__(self, x: mx.array) -> mx.array:
ne = self.num_experts_per_tok
orig_shape = x.shape
x = x.reshape(-1, x.shape[-1])
gates = self.gate(x)
inds = mx.argpartition(-gates, kth=ne, axis=-1)[:, :ne]
scores = mx.softmax(
mx.take_along_axis(gates, inds, axis=-1).astype(mx.float32),
axis=-1,
).astype(gates.dtype)
y = []
for xt, st, it in zip(x, scores, inds.tolist()):
yt = mx.concatenate([self.experts[e](xt)[:, None] for e in it], axis=-1)
yt = (yt * st).sum(axis=-1)
y.append(yt[None, :])
y = mx.concatenate(y)
return y.reshape(orig_shape)
class MixtralDecoderLayer(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.hidden_size = args.hidden_size
self.self_attn = MixtralAttention(args)
self.block_sparse_moe = MixtralSparseMoeBlock(args)
self.input_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
r, cache = self.self_attn(self.input_layernorm(x), mask, cache)
h = x + r
r = self.block_sparse_moe(self.post_attention_layernorm(h))
out = h + r
return out, cache
class MixtralModel(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.vocab_size = args.vocab_size
self.num_hidden_layers = args.num_hidden_layers
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
self.layers = [
MixtralDecoderLayer(args=args) for _ in range(args.num_hidden_layers)
]
self.norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
def __call__(
self,
inputs: mx.array,
cache=None,
):
h = self.embed_tokens(inputs)
mask = None
T = h.shape[1]
if T > 1:
mask = nn.MultiHeadAttention.create_additive_causal_mask(T)
mask = mask.astype(h.dtype)
if cache is None:
cache = [None] * len(self.layers)
for e, layer in enumerate(self.layers):
h, cache[e] = layer(h, mask, cache[e])
return self.norm(h[:, T - 1 : T, :]), cache
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.model = MixtralModel(args)
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
def __call__(
self,
inputs: mx.array,
cache=None,
):
out, cache = self.model(inputs, cache)
return self.lm_head(out), cache

View File

@ -10,16 +10,21 @@ from huggingface_hub import snapshot_download
from transformers import AutoTokenizer, PreTrainedTokenizer
# Local imports
from .models import llama, phi2
from .models import llama, mixtral, phi2
from .models.base import BaseModelArgs
# Constants
MODEL_MAPPING = {
"llama": llama,
"mistral": llama, # mistral is compatible with llama
"mixtral": mixtral,
"phi": phi2,
}
linear_class_predicate = (
lambda m: isinstance(m, nn.Linear) and m.weight.shape[0] % 32 == 0
) # TODO remove this once we support quantization for non-multiples of 32
def _get_classes(config: dict):
"""
@ -171,7 +176,11 @@ def load(path_or_hf_repo: str) -> Tuple[nn.Module, PreTrainedTokenizer]:
model = model_class(model_args)
if quantization is not None:
nn.QuantizedLinear.quantize_module(model, **quantization)
nn.QuantizedLinear.quantize_module(
model,
**quantization,
linear_class_predicate=linear_class_predicate,
)
model.load_weights(list(weights.items()))