imopemented multi Token inputs, but still generating Gibberish

This commit is contained in:
Goekdeniz-Guelmez 2024-11-10 17:19:00 +01:00
parent 2f95b361a8
commit 1a6688384d

View File

@ -91,168 +91,6 @@ def ssd(x, A, B, C, chunk_size):
return mx.concatenate(outputs, axis=1), state
# class DepthWiseConv1d(nn.Module):
# def __init__(self, in_channels, out_channels, kernel_size, bias=True, groups=None, padding=0):
# super().__init__()
# self.in_channels = in_channels
# self.out_channels = out_channels
# self.kernel_size = kernel_size
# self.padding = padding
# self.groups = groups if groups is not None else in_channels
# assert in_channels == out_channels, "In and out channels must be same for depthwise convolution"
# assert self.groups == in_channels, "Groups must be equal to in_channels for depthwise convolution"
# self.weight = mx.random.normal((in_channels, 1, kernel_size))
# self.bias = mx.zeros((out_channels,)) if bias else None
# def __call__(self, x: mx.array, cache=None) -> mx.array:
# B, L, C = x.shape
# K = self.kernel_size
# assert C == self.in_channels, f"Input channels {C} doesn't match expected {self.in_channels}"
# if cache is not None:
# if isinstance(cache.conv_states[0], type(None)):
# cache.conv_states[0] = mx.zeros((B, K-1, C))
# x = mx.concatenate([cache.conv_states[0], x], axis=1)
# outputs = []
# for c in range(C):
# # Input prep debug
# x_c = x[:, :, c]
# x_c = mx.expand_dims(x_c, axis=1)
# # Weight prep debug
# w_c = self.weight[c]
# if w_c.ndim == 2:
# w_c = mx.expand_dims(w_c, axis=0)
# elif w_c.ndim == 1:
# w_c = mx.expand_dims(mx.expand_dims(w_c, axis=0), axis=0)
# y_c = mx.conv_general(
# x_c,
# w_c,
# stride=1,
# padding=0
# )
# if self.bias is not None:
# y_c = y_c + self.bias[c]
# y_c = mx.squeeze(y_c, axis=1)
# outputs.append(y_c)
# # Output statistics
# y = mx.stack(outputs, axis=-1)
# # Cache update debug
# if cache is not None:
# cache.conv_states[0] = x[:, -K+1:, :] if x.shape[1] >= K else x
# return y
# class Mamba2Block(nn.Module):
# def __init__(self, args: ModelArgs):
# super().__init__()
# self.args = args
# d_in_proj = 2 * args.intermediate_size + 2 * args.state_size + args.num_heads
# self.in_proj = nn.Linear(args.hidden_size, d_in_proj, bias=args.use_bias)
# conv_dim = args.intermediate_size + 2 * args.state_size
# self.conv1d = DepthWiseConv1d(
# in_channels=conv_dim,
# out_channels=conv_dim,
# kernel_size=args.conv_kernel,
# groups=conv_dim,
# bias=args.use_conv_bias,
# padding=args.conv_kernel - 1
# )
# self.dt_bias = mx.random.normal((args.num_heads,)) * args.initializer_range
# self.A_log = mx.random.normal((args.num_heads,)) * args.initializer_range
# self.D = mx.random.normal((args.num_heads,)) * args.initializer_range
# self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon)
# self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
# if args.rescale_prenorm_residual:
# layer_scale = math.sqrt(1.0 / args.num_hidden_layers)
# self.out_proj.weight = self.out_proj.weight * layer_scale
# def __call__(self, u: mx.array, cache=None):
# # Expect input to be shape [batch_size, 1, dim]
# batch_size, seq_len, dimension = u.shape
# assert seq_len == 1, "Input should be a single token"
# # Initialize cache if needed
# if cache.conv_states[0] is None:
# conv_dim = self.args.intermediate_size + 2 * self.args.state_size
# cache.conv_states[0] = mx.zeros((batch_size, self.args.conv_kernel - 1, conv_dim))
# if cache.ssm_states[0] is None:
# cache.ssm_states[0] = mx.zeros((
# batch_size,
# self.args.num_heads,
# self.args.head_dim,
# self.args.state_size
# ))
# # Project input
# zxbcdt = self.in_proj(u)
# # Split projections
# n_heads = self.args.num_heads
# z = zxbcdt[:, :, :self.args.intermediate_size]
# xBC = zxbcdt[:, :, self.args.intermediate_size:self.args.intermediate_size + 2*self.args.state_size + self.args.intermediate_size]
# dt = zxbcdt[:, :, -(n_heads):]
# # Time steps
# dt = mx.reshape(dt, (batch_size, n_heads))
# dt = mx.clip(nn.softplus(dt + self.dt_bias), self.args.time_step_min, self.args.time_step_max)
# dt = mx.maximum(dt, self.args.time_step_floor)
# # Convolution
# xBC = self.conv1d(xBC, cache=cache)
# xBC = silu(xBC)
# # Split states
# x = xBC[:, :, :self.args.intermediate_size]
# B = xBC[:, :, self.args.intermediate_size:self.args.intermediate_size + self.args.state_size]
# C = xBC[:, :, -self.args.state_size:]
# # Reshape for SSM
# x = mx.reshape(x, (batch_size, 1, n_heads, self.args.head_dim))
# x = mx.squeeze(x, axis=1)
# B = mx.reshape(B, (batch_size, 1, self.args.state_size))
# B = mx.broadcast_to(B, (batch_size, n_heads, self.args.state_size))
# B = mx.expand_dims(B, axis=2)
# C = mx.reshape(C, (batch_size, 1, self.args.state_size))
# C = mx.broadcast_to(C, (batch_size, n_heads, self.args.state_size))
# C = mx.expand_dims(C, axis=3)
# # SSM updates
# A = -mx.exp(self.A_log)
# dA = mx.exp(dt * mx.expand_dims(A, 0))
# dA = mx.expand_dims(mx.expand_dims(dA, -1), -1)
# # Update state
# x = mx.expand_dims(x, axis=3)
# dBx = mx.matmul(x, B)
# cache.ssm_states[0] = cache.ssm_states[0] * dA + dBx
# # Compute output
# y = mx.matmul(cache.ssm_states[0], C)
# y = mx.squeeze(y, axis=-1)
# y = y + x[:, :, :, 0] * mx.expand_dims(self.D, -1)
# y = mx.reshape(y, (batch_size, 1, n_heads * self.args.head_dim))
# y = self.norm(y + z)
# return self.out_proj(y)
class DepthWiseConv1d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=True, groups=None, padding=0):
super().__init__()
@ -313,6 +151,97 @@ class DepthWiseConv1d(nn.Module):
return y
# class Mamba2Block(nn.Module):
# def __init__(self, args: ModelArgs):
# super().__init__()
# self.args = args
# d_in_proj = 2 * args.intermediate_size + 2 * args.state_size + args.num_heads
# self.in_proj = nn.Linear(args.hidden_size, d_in_proj, bias=args.use_bias)
# conv_dim = args.intermediate_size + 2 * args.state_size
# self.conv1d = DepthWiseConv1d(
# in_channels=conv_dim,
# out_channels=conv_dim,
# kernel_size=args.conv_kernel,
# groups=conv_dim,
# bias=args.use_conv_bias,
# padding=args.conv_kernel - 1
# )
# self.dt_bias = mx.random.normal((args.num_heads,)) * args.initializer_range
# self.A_log = mx.random.normal((args.num_heads,)) * args.initializer_range
# self.D = mx.random.normal((args.num_heads,)) * args.initializer_range
# self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon)
# self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
# if args.rescale_prenorm_residual:
# layer_scale = math.sqrt(1.0 / args.num_hidden_layers)
# self.out_proj.weight = self.out_proj.weight * layer_scale
# def __call__(self, u: mx.array, cache=None):
# batch_size, seq_len, dimension = u.shape
# assert seq_len == 1, "Input should be a single token"
# # Initialize cache states directly using indices
# if cache[0] is None: # conv state
# conv_dim = self.args.intermediate_size + 2 * self.args.state_size
# cache[0] = mx.zeros((batch_size, self.args.conv_kernel - 1, conv_dim))
# if cache[1] is None: # ssm state
# cache[1] = mx.zeros((
# batch_size,
# self.args.num_heads,
# self.args.head_dim,
# self.args.state_size
# ))
# zxbcdt = self.in_proj(u)
# n_heads = self.args.num_heads
# z = zxbcdt[:, :, :self.args.intermediate_size]
# xBC = zxbcdt[:, :, self.args.intermediate_size:self.args.intermediate_size + 2*self.args.state_size + self.args.intermediate_size]
# dt = zxbcdt[:, :, -(n_heads):]
# dt = mx.reshape(dt, (batch_size, n_heads))
# dt = mx.clip(nn.softplus(dt + self.dt_bias), self.args.time_step_min, self.args.time_step_max)
# dt = mx.maximum(dt, self.args.time_step_floor)
# xBC = self.conv1d(xBC, cache=cache)
# xBC = silu(xBC)
# x = xBC[:, :, :self.args.intermediate_size]
# B = xBC[:, :, self.args.intermediate_size:self.args.intermediate_size + self.args.state_size]
# C = xBC[:, :, -self.args.state_size:]
# x = mx.reshape(x, (batch_size, 1, n_heads, self.args.head_dim))
# x = mx.squeeze(x, axis=1)
# B = mx.reshape(B, (batch_size, 1, self.args.state_size))
# B = mx.broadcast_to(B, (batch_size, n_heads, self.args.state_size))
# B = mx.expand_dims(B, axis=2)
# C = mx.reshape(C, (batch_size, 1, self.args.state_size))
# C = mx.broadcast_to(C, (batch_size, n_heads, self.args.state_size))
# C = mx.expand_dims(C, axis=3)
# A = -mx.exp(self.A_log)
# dA = mx.exp(dt * mx.expand_dims(A, 0))
# dA = mx.expand_dims(mx.expand_dims(dA, -1), -1)
# x = mx.expand_dims(x, axis=3)
# dBx = mx.matmul(x, B)
# # Update ssm state directly using cache[1]
# cache[1] = cache[1] * dA + dBx
# y = mx.matmul(cache[1], C)
# y = mx.squeeze(y, axis=-1)
# y = y + x[:, :, :, 0] * mx.expand_dims(self.D, -1)
# y = mx.reshape(y, (batch_size, 1, n_heads * self.args.head_dim))
# y = self.norm(y + z)
# return self.out_proj(y)
class Mamba2Block(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
@ -344,64 +273,81 @@ class Mamba2Block(nn.Module):
def __call__(self, u: mx.array, cache=None):
batch_size, seq_len, dimension = u.shape
assert seq_len == 1, "Input should be a single token"
# Initialize cache states directly using indices
if cache[0] is None: # conv state
conv_dim = self.args.intermediate_size + 2 * self.args.state_size
cache[0] = mx.zeros((batch_size, self.args.conv_kernel - 1, conv_dim))
if cache[1] is None: # ssm state
cache[1] = mx.zeros((
batch_size,
self.args.num_heads,
self.args.head_dim,
self.args.state_size
))
zxbcdt = self.in_proj(u)
n_heads = self.args.num_heads
z = zxbcdt[:, :, :self.args.intermediate_size]
xBC = zxbcdt[:, :, self.args.intermediate_size:self.args.intermediate_size + 2*self.args.state_size + self.args.intermediate_size]
dt = zxbcdt[:, :, -(n_heads):]
# Process sequence in chunks if needed
outputs = []
current_cache = cache
for i in range(seq_len):
# Extract current token
current_input = u[:, i:i+1, :]
# Initialize cache states if needed
if current_cache[0] is None: # conv state
conv_dim = self.args.intermediate_size + 2 * self.args.state_size
current_cache[0] = mx.zeros((batch_size, self.args.conv_kernel - 1, conv_dim))
dt = mx.reshape(dt, (batch_size, n_heads))
dt = mx.clip(nn.softplus(dt + self.dt_bias), self.args.time_step_min, self.args.time_step_max)
dt = mx.maximum(dt, self.args.time_step_floor)
if current_cache[1] is None: # ssm state
current_cache[1] = mx.zeros((
batch_size,
self.args.num_heads,
self.args.head_dim,
self.args.state_size
))
xBC = self.conv1d(xBC, cache=cache)
xBC = silu(xBC)
# Project input
zxbcdt = self.in_proj(current_input)
n_heads = self.args.num_heads
z = zxbcdt[:, :, :self.args.intermediate_size]
xBC = zxbcdt[:, :, self.args.intermediate_size:self.args.intermediate_size + 2*self.args.state_size + self.args.intermediate_size]
dt = zxbcdt[:, :, -(n_heads):]
x = xBC[:, :, :self.args.intermediate_size]
B = xBC[:, :, self.args.intermediate_size:self.args.intermediate_size + self.args.state_size]
C = xBC[:, :, -self.args.state_size:]
# Process time steps
dt = mx.reshape(dt, (batch_size, n_heads))
dt = mx.clip(nn.softplus(dt + self.dt_bias), self.args.time_step_min, self.args.time_step_max)
dt = mx.maximum(dt, self.args.time_step_floor)
x = mx.reshape(x, (batch_size, 1, n_heads, self.args.head_dim))
x = mx.squeeze(x, axis=1)
B = mx.reshape(B, (batch_size, 1, self.args.state_size))
B = mx.broadcast_to(B, (batch_size, n_heads, self.args.state_size))
B = mx.expand_dims(B, axis=2)
C = mx.reshape(C, (batch_size, 1, self.args.state_size))
C = mx.broadcast_to(C, (batch_size, n_heads, self.args.state_size))
C = mx.expand_dims(C, axis=3)
# Apply convolution
xBC = self.conv1d(xBC, cache=current_cache)
xBC = silu(xBC)
A = -mx.exp(self.A_log)
dA = mx.exp(dt * mx.expand_dims(A, 0))
dA = mx.expand_dims(mx.expand_dims(dA, -1), -1)
# Split states
x = xBC[:, :, :self.args.intermediate_size]
B = xBC[:, :, self.args.intermediate_size:self.args.intermediate_size + self.args.state_size]
C = xBC[:, :, -self.args.state_size:]
x = mx.expand_dims(x, axis=3)
dBx = mx.matmul(x, B)
# Update ssm state directly using cache[1]
cache[1] = cache[1] * dA + dBx
# Reshape for SSM
x = mx.reshape(x, (batch_size, 1, n_heads, self.args.head_dim))
x = mx.squeeze(x, axis=1)
B = mx.reshape(B, (batch_size, 1, self.args.state_size))
B = mx.broadcast_to(B, (batch_size, n_heads, self.args.state_size))
B = mx.expand_dims(B, axis=2)
C = mx.reshape(C, (batch_size, 1, self.args.state_size))
C = mx.broadcast_to(C, (batch_size, n_heads, self.args.state_size))
C = mx.expand_dims(C, axis=3)
y = mx.matmul(cache[1], C)
y = mx.squeeze(y, axis=-1)
y = y + x[:, :, :, 0] * mx.expand_dims(self.D, -1)
y = mx.reshape(y, (batch_size, 1, n_heads * self.args.head_dim))
y = self.norm(y + z)
# SSM updates
A = -mx.exp(self.A_log)
dA = mx.exp(dt * mx.expand_dims(A, 0))
dA = mx.expand_dims(mx.expand_dims(dA, -1), -1)
return self.out_proj(y)
# Update state
x = mx.expand_dims(x, axis=3)
dBx = mx.matmul(x, B)
current_cache[1] = current_cache[1] * dA + dBx
# Compute output
y = mx.matmul(current_cache[1], C)
y = mx.squeeze(y, axis=-1)
y = y + x[:, :, :, 0] * mx.expand_dims(self.D, -1)
y = mx.reshape(y, (batch_size, 1, n_heads * self.args.head_dim))
y = self.norm(y + z)
outputs.append(self.out_proj(y))
# Concatenate all outputs
return mx.concatenate(outputs, axis=1)
class ResidualBlock(nn.Module):