mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-26 18:51:18 +08:00
initial commit
This commit is contained in:
parent
07f88f8057
commit
1ff788821c
@ -15,6 +15,7 @@ import yaml
|
||||
from .tokenizer_utils import TokenizerWrapper
|
||||
from .tuner.datasets import load_dataset
|
||||
from .tuner.trainer import TrainingArgs, TrainingCallback, evaluate, train
|
||||
from .tuner.dpo_trainer import DPOTrainingArgs, evaluate_dpo, train_dpo
|
||||
from .tuner.utils import (
|
||||
build_schedule,
|
||||
linear_to_lora_layers,
|
||||
@ -43,6 +44,7 @@ CONFIG_DEFAULTS = {
|
||||
"model": "mlx_model",
|
||||
"train": False,
|
||||
"fine_tune_type": "lora",
|
||||
"training_mode": "normal",
|
||||
"data": "data/",
|
||||
"seed": 0,
|
||||
"num_layers": 16,
|
||||
@ -62,6 +64,12 @@ CONFIG_DEFAULTS = {
|
||||
"grad_checkpoint": False,
|
||||
"lr_schedule": None,
|
||||
"lora_parameters": {"rank": 8, "alpha": 16, "dropout": 0.0, "scale": 10.0},
|
||||
"beta": 0.1,
|
||||
"dpo_loss_type": "sigmoid",
|
||||
"is_reference_free": False,
|
||||
"delta": 50.0,
|
||||
"reference_model_path": None,
|
||||
"train_bias_only": False,
|
||||
}
|
||||
|
||||
|
||||
@ -94,6 +102,12 @@ def build_parser():
|
||||
choices=["lora", "dora", "full"],
|
||||
help="Type of fine-tuning to perform: lora, dora, or full.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--training-mode",
|
||||
type=str,
|
||||
choices=["normal", "dpo"],
|
||||
help="Training mode: normal or DPO",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-layers",
|
||||
type=int,
|
||||
@ -160,6 +174,12 @@ def build_parser():
|
||||
help="Use gradient checkpointing to reduce memory use.",
|
||||
default=None,
|
||||
)
|
||||
parser.add_argument("--beta", type=float)
|
||||
parser.add_argument("--dpo-loss-type", type=str, choices=["sigmoid", "hinge", "ipo", "dpop"])
|
||||
parser.add_argument("--is-reference-free", action="store_true")
|
||||
parser.add_argument("--delta", type=float)
|
||||
parser.add_argument("--reference-model-path", type=str)
|
||||
parser.add_argument("--train-bias-only", action="store_true")
|
||||
parser.add_argument("--seed", type=int, help="The PRNG seed")
|
||||
return parser
|
||||
|
||||
@ -200,8 +220,15 @@ def train_model(
|
||||
adapter_file = adapter_path / "adapters.safetensors"
|
||||
save_config(vars(args), adapter_path / "adapter_config.json")
|
||||
|
||||
# init training args
|
||||
training_args = TrainingArgs(
|
||||
model.train()
|
||||
opt = optim.Adam(
|
||||
learning_rate=(
|
||||
build_schedule(args.lr_schedule) if args.lr_schedule else args.learning_rate
|
||||
)
|
||||
)
|
||||
# Train model
|
||||
if args.training_mode == "dpo":
|
||||
training_args = DPOTrainingArgs(
|
||||
batch_size=args.batch_size,
|
||||
iters=args.iters,
|
||||
val_batches=args.val_batches,
|
||||
@ -211,22 +238,49 @@ def train_model(
|
||||
adapter_file=adapter_file,
|
||||
max_seq_length=args.max_seq_length,
|
||||
grad_checkpoint=args.grad_checkpoint,
|
||||
beta=args.beta,
|
||||
loss_type=args.dpo_loss_type,
|
||||
is_reference_free=args.is_reference_free,
|
||||
delta=args.delta,
|
||||
reference_model_path=args.reference_model_path,
|
||||
train_bias_only=args.train_bias_only,
|
||||
)
|
||||
|
||||
model.train()
|
||||
opt = optim.Adam(
|
||||
learning_rate=(
|
||||
build_schedule(args.lr_schedule) if args.lr_schedule else args.learning_rate
|
||||
)
|
||||
)
|
||||
# Train model
|
||||
train(
|
||||
if args.reference_model_path:
|
||||
reference_model, _ = load(args.reference_model_path)
|
||||
else:
|
||||
reference_model = model
|
||||
|
||||
train_dpo(
|
||||
model=model,
|
||||
reference_model=reference_model,
|
||||
tokenizer=tokenizer,
|
||||
args=training_args,
|
||||
optimizer=opt,
|
||||
train_dataset=train_set,
|
||||
val_dataset=valid_set,
|
||||
args=training_args,
|
||||
training_callback=training_callback,
|
||||
)
|
||||
else:
|
||||
training_args = TrainingArgs(
|
||||
batch_size=args.batch_size,
|
||||
iters=args.iters,
|
||||
val_batches=args.val_batches,
|
||||
steps_per_report=args.steps_per_report,
|
||||
steps_per_eval=args.steps_per_eval,
|
||||
steps_per_save=args.save_every,
|
||||
adapter_file=adapter_file,
|
||||
max_seq_length=args.max_seq_length,
|
||||
grad_checkpoint=args.grad_checkpoint
|
||||
)
|
||||
|
||||
train(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
optimizer=opt,
|
||||
train_dataset=train_set,
|
||||
val_dataset=valid_set,
|
||||
args=training_args,
|
||||
training_callback=training_callback,
|
||||
)
|
||||
|
||||
@ -234,6 +288,26 @@ def train_model(
|
||||
def evaluate_model(args, model: nn.Module, tokenizer: TokenizerWrapper, test_set):
|
||||
model.eval()
|
||||
|
||||
if args.training_mode == "dpo":
|
||||
if args.reference_model_path:
|
||||
reference_model, _ = load(args.reference_model_path)
|
||||
else:
|
||||
reference_model = model
|
||||
|
||||
test_loss, test_rewards = evaluate_dpo(
|
||||
model=model,
|
||||
reference_model=reference_model,
|
||||
dataset=test_set,
|
||||
tokenizer=tokenizer,
|
||||
batch_size=args.batch_size,
|
||||
num_batches=args.test_batches,
|
||||
max_seq_length=args.max_seq_length,
|
||||
beta=args.beta,
|
||||
delta=args.delta,
|
||||
loss_type=args.loss_type,
|
||||
)
|
||||
print(f"Test loss {test_loss:.3f}, Rewards: {test_rewards[0]:.3f}, {test_rewards[1]:.3f}")
|
||||
else:
|
||||
test_loss = evaluate(
|
||||
model=model,
|
||||
dataset=test_set,
|
||||
@ -263,7 +337,7 @@ def run(args, training_callback: TrainingCallback = None):
|
||||
load_adapters(model, args.adapter_path)
|
||||
|
||||
elif args.train:
|
||||
print("Training")
|
||||
print(f"Training in {args.training_mode} mode")
|
||||
train_model(args, model, tokenizer, train_set, valid_set, training_callback)
|
||||
else:
|
||||
raise ValueError("Must provide at least one of --train or --test")
|
||||
|
@ -5,6 +5,51 @@ from typing import Dict, List, Optional
|
||||
from transformers import PreTrainedTokenizer
|
||||
|
||||
|
||||
class DPODataset:
|
||||
"""
|
||||
A dataset for DPO (Direct Preference Optimization) training that handles
|
||||
prompt-chosen-rejected triplets in the format:
|
||||
{"prompt": ..., "chosen": ..., "rejected": ...}
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
data: List[Dict[str, str]],
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
prompt_key: str = "prompt",
|
||||
chosen_key: str = "chosen",
|
||||
rejected_key: str = "rejected",
|
||||
):
|
||||
self._chosen_data = [
|
||||
tokenizer.apply_chat_template(
|
||||
[
|
||||
{"role": "user", "content": d[prompt_key]},
|
||||
{"role": "assistant", "content": d[chosen_key]},
|
||||
],
|
||||
)
|
||||
for d in data
|
||||
]
|
||||
|
||||
self._rejected_data = [
|
||||
tokenizer.apply_chat_template(
|
||||
[
|
||||
{"role": "user", "content": d[prompt_key]},
|
||||
{"role": "assistant", "content": d[rejected_key]},
|
||||
],
|
||||
)
|
||||
for d in data
|
||||
]
|
||||
|
||||
def __getitem__(self, idx: int):
|
||||
return {
|
||||
"chosen": self._chosen_data[idx],
|
||||
"rejected": self._rejected_data[idx]
|
||||
}
|
||||
|
||||
def __len__(self):
|
||||
return len(self._chosen_data)
|
||||
|
||||
|
||||
class Dataset:
|
||||
"""
|
||||
Light-weight wrapper to hold a dataset.
|
||||
@ -90,7 +135,11 @@ def create_dataset(
|
||||
prompt_feature = prompt_feature or "prompt"
|
||||
completion_feature = completion_feature or "completion"
|
||||
sample = data[0]
|
||||
if "messages" in sample:
|
||||
|
||||
# Add DPO dataset support
|
||||
if "chosen" in sample and "rejected" in sample:
|
||||
return DPODataset(data, tokenizer)
|
||||
elif "messages" in sample:
|
||||
return ChatDataset(data, tokenizer)
|
||||
elif prompt_feature in sample and completion_feature in sample:
|
||||
return CompletionsDataset(data, tokenizer, prompt_feature, completion_feature)
|
||||
|
548
llms/mlx_lm/tuner/dpo_trainer.py
Normal file
548
llms/mlx_lm/tuner/dpo_trainer.py
Normal file
@ -0,0 +1,548 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import glob
|
||||
import shutil
|
||||
import time
|
||||
from dataclasses import dataclass, field
|
||||
from pathlib import Path
|
||||
from typing import Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
from mlx.nn.utils import average_gradients
|
||||
from mlx.utils import tree_flatten
|
||||
from ..generate import generate
|
||||
|
||||
|
||||
class TrainingCallback:
|
||||
|
||||
def on_train_loss_report(self, train_info: dict):
|
||||
"""Called to report training loss at specified intervals."""
|
||||
pass
|
||||
|
||||
def on_val_loss_report(self, val_info: dict):
|
||||
"""Called to report validation loss at specified intervals or the beginning."""
|
||||
pass
|
||||
|
||||
|
||||
def grad_checkpoint(layer):
|
||||
"""
|
||||
Update all instances of type(layer) to use gradient checkpointing.
|
||||
"""
|
||||
fn = type(layer).__call__
|
||||
|
||||
def checkpointed_fn(model, *args, **kwargs):
|
||||
def inner_fn(params, *args, **kwargs):
|
||||
model.update(params)
|
||||
return fn(model, *args, **kwargs)
|
||||
|
||||
return mx.checkpoint(inner_fn)(model.trainable_parameters(), *args, **kwargs)
|
||||
|
||||
type(layer).__call__ = checkpointed_fn
|
||||
|
||||
|
||||
@dataclass
|
||||
class DPOTrainingArgs:
|
||||
# Original parameters
|
||||
batch_size: int = field(default=4, metadata={"help": "Minibatch size."})
|
||||
iters: int = field(default=100, metadata={"help": "Iterations to train for."})
|
||||
val_batches: int = field(
|
||||
default=25,
|
||||
metadata={
|
||||
"help": "Number of validation batches, -1 uses the entire validation set."
|
||||
},
|
||||
)
|
||||
steps_per_report: int = field(
|
||||
default=10,
|
||||
metadata={"help": "Number of training steps between loss reporting."},
|
||||
)
|
||||
steps_per_eval: int = field(
|
||||
default=200,
|
||||
metadata={"help": "Number of training steps between validations."}
|
||||
)
|
||||
steps_per_save: int = field(
|
||||
default=100,
|
||||
metadata={"help": "Save the model every number steps"}
|
||||
)
|
||||
max_seq_length: int = field(
|
||||
default=2048,
|
||||
metadata={"help": "Maximum sequence length."}
|
||||
)
|
||||
adapter_file: str = field(
|
||||
default="adapters.safetensors",
|
||||
metadata={"help": "Save/load path for the trained adapter weights."},
|
||||
)
|
||||
grad_checkpoint: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Use gradient checkpointing to reduce memory use."},
|
||||
)
|
||||
|
||||
# DPO-specific parameters
|
||||
beta: float = field(
|
||||
default=0.1,
|
||||
metadata={"help": "Temperature parameter for DPO training."}
|
||||
)
|
||||
loss_type: str = field(
|
||||
default="sigmoid",
|
||||
metadata={
|
||||
"help": "DPO loss type: 'sigmoid', 'hinge', 'ipo', or 'dpop'."
|
||||
}
|
||||
)
|
||||
is_reference_free: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
"help": "Whether to use reference-free DPO training."
|
||||
}
|
||||
)
|
||||
delta: float = field(
|
||||
default=50.0,
|
||||
metadata={
|
||||
"help": "Delta parameter for DPOP loss type."
|
||||
}
|
||||
)
|
||||
reference_model_path: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "Path to reference model weights. If None, uses the same model."
|
||||
}
|
||||
)
|
||||
train_bias_only: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
"help": "Whether to train only bias terms in the model."
|
||||
}
|
||||
)
|
||||
seed: int = field(
|
||||
default=42,
|
||||
metadata={
|
||||
"help": "Random seed for reproducibility."
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
def dpo_loss(
|
||||
model,
|
||||
reference_teacher_model,
|
||||
chosen: mx.array,
|
||||
rejected: mx.array,
|
||||
chosen_masks: mx.array,
|
||||
rejected_masks: mx.array,
|
||||
beta: float,
|
||||
delta: float,
|
||||
loss_type: str = "sigmoid",
|
||||
is_reference_free: bool = False
|
||||
):
|
||||
"""
|
||||
Calculate loss for inputs.
|
||||
Args:
|
||||
inputs: Input tokens.
|
||||
targets: Target tokens.
|
||||
lengths: Lengths of inputs.
|
||||
Returns:
|
||||
Loss value.
|
||||
"""
|
||||
def make_predictions(model, x, mask):
|
||||
inputs = x[:, :-1]
|
||||
targets = x[:, 1:]
|
||||
|
||||
logits = model(inputs)
|
||||
logits = logits.astype(mx.float32)
|
||||
|
||||
return -nn.losses.cross_entropy(logits, targets) * mask[:, :-1]
|
||||
|
||||
num_chosen_tokens = chosen_masks.sum(-1)
|
||||
num_rejected_tokens = rejected_masks.sum(-1)
|
||||
|
||||
# Calculate log probabilities for policy model
|
||||
policy_chosen_scores = make_predictions(model, chosen, chosen_masks)
|
||||
policy_rejected_scores = make_predictions(model, rejected, rejected_masks)
|
||||
if loss_type == "ipo":
|
||||
# ipo uses average log probabilities
|
||||
policy_chosen_score = policy_chosen_scores.sum(-1) / num_chosen_tokens
|
||||
policy_rejected_score = policy_rejected_scores.sum(-1) / num_rejected_tokens
|
||||
else:
|
||||
policy_chosen_score = policy_chosen_scores.sum(-1)
|
||||
policy_rejected_score = policy_rejected_scores.sum(-1)
|
||||
|
||||
# Calculate log probabilities for reference model
|
||||
if is_reference_free:
|
||||
reference_chosen_score = mx.zeros_like(policy_chosen_score)
|
||||
reference_rejected_score = mx.zeros_like(policy_rejected_score)
|
||||
else:
|
||||
reference_chosen_scores = mx.stop_gradient(make_predictions(reference_teacher_model, chosen, chosen_masks))
|
||||
reference_rejected_scores = mx.stop_gradient(make_predictions(reference_teacher_model, rejected, rejected_masks))
|
||||
if loss_type == "ipo":
|
||||
# ipo uses average log probabilities
|
||||
reference_chosen_score = reference_chosen_scores.sum(-1) / num_chosen_tokens
|
||||
reference_rejected_score = reference_rejected_scores.sum(-1) / num_rejected_tokens
|
||||
else:
|
||||
reference_chosen_score = reference_chosen_scores.sum(-1)
|
||||
reference_rejected_score = reference_rejected_scores.sum(-1)
|
||||
|
||||
logits = (policy_chosen_score - policy_rejected_score) - (reference_chosen_score - reference_rejected_score)
|
||||
|
||||
if loss_type == "sigmoid":
|
||||
losses = -nn.log_sigmoid(beta * logits)
|
||||
elif loss_type == "hinge":
|
||||
losses = nn.relu(1 - beta * logits)
|
||||
elif loss_type == "ipo":
|
||||
losses = (logits - 1 / (2 * beta)) ** 2
|
||||
elif loss_type == "dpop":
|
||||
delta = 50
|
||||
penalty = mx.maximum(mx.zeros_like(policy_chosen_score), reference_chosen_score - policy_chosen_score)
|
||||
losses = -(nn.log_sigmoid(beta * logits) - delta * penalty)
|
||||
else:
|
||||
raise ValueError(f"Unknown loss type: {loss_type}")
|
||||
|
||||
loss = mx.mean(losses)
|
||||
num_tokens = (num_chosen_tokens + num_rejected_tokens).sum()
|
||||
|
||||
chosen_reward = beta * mx.mean(policy_chosen_score - reference_chosen_score)
|
||||
rejected_reward = beta * mx.mean(policy_rejected_score - reference_rejected_score)
|
||||
reward = mx.stack([chosen_reward, rejected_reward])
|
||||
|
||||
return loss, reward, num_tokens
|
||||
|
||||
|
||||
def compare(
|
||||
tokenizer,
|
||||
model: nn.Module,
|
||||
reference_teacher_model: nn.Module,
|
||||
prompt: str,
|
||||
temperature: float = 0.0,
|
||||
max_tokens: int = 1024
|
||||
):
|
||||
"""
|
||||
Generate comparison between policy and reference model completions.
|
||||
Args:
|
||||
prompt: Prompt to start generation.
|
||||
temperature: Sampling temperature.
|
||||
max_tokens: Max number of tokens to generate.
|
||||
Returns:
|
||||
Completions.
|
||||
"""
|
||||
reference_completion = ''.join([t[0] for t in generate(reference_teacher_model, tokenizer, prompt, temperature==temperature, max_tokens=max_tokens)])
|
||||
policy_completion = ''.join([t[0] for t in generate(model, tokenizer, prompt, temperature=temperature, max_tokens=max_tokens)])
|
||||
|
||||
return reference_completion, policy_completion
|
||||
|
||||
|
||||
def iterate_dpo_batches(dataset, tokenizer, batch_size, max_seq_length, train=False):
|
||||
"""
|
||||
Modified iterate_batches for DPO training that handles chosen and rejected samples.
|
||||
"""
|
||||
# Sort pairs by length of the chosen response
|
||||
idx = sorted(range(len(dataset)), key=lambda idx: len(dataset[idx]['chosen']))
|
||||
if len(dataset) < batch_size:
|
||||
raise ValueError(
|
||||
f"Dataset must have at least batch_size={batch_size}"
|
||||
f" examples but only has {len(dataset)}."
|
||||
)
|
||||
|
||||
step = mx.distributed.init().size()
|
||||
if batch_size % step != 0:
|
||||
raise ValueError("The batch size must be divisible by the number of workers")
|
||||
|
||||
batch_idx = [
|
||||
idx[i : i + batch_size : step]
|
||||
for i in range(0, len(idx) - batch_size + 1, batch_size)
|
||||
]
|
||||
|
||||
while True:
|
||||
indices = np.random.permutation(len(batch_idx)) if train else range(len(batch_idx))
|
||||
for i in indices:
|
||||
batch = [dataset[j] for j in batch_idx[i]]
|
||||
|
||||
# Get lengths for chosen and rejected sequences
|
||||
chosen_lengths = [len(x['chosen']) for x in batch]
|
||||
rejected_lengths = [len(x['rejected']) for x in batch]
|
||||
max_length = max(max(chosen_lengths), max(rejected_lengths))
|
||||
|
||||
if max_length > max_seq_length:
|
||||
print(
|
||||
f"[WARNING] Some sequences are longer than {max_seq_length} tokens. "
|
||||
f"The longest sequence {max_length} will be truncated to {max_seq_length}."
|
||||
)
|
||||
|
||||
# Pad to nearest multiple of 8
|
||||
pad_to = 8
|
||||
max_length_in_batch = pad_to * ((max_length + pad_to - 1) // pad_to)
|
||||
max_length_in_batch = min(max_length_in_batch, max_seq_length)
|
||||
|
||||
# Create arrays for chosen and rejected sequences
|
||||
chosen_arr = np.zeros((batch_size // step, max_length_in_batch), np.int32)
|
||||
rejected_arr = np.zeros((batch_size // step, max_length_in_batch), np.int32)
|
||||
|
||||
# Create attention masks
|
||||
chosen_masks = np.zeros((batch_size // step, max_length_in_batch), np.float32)
|
||||
rejected_masks = np.zeros((batch_size // step, max_length_in_batch), np.float32)
|
||||
|
||||
for j in range(batch_size // step):
|
||||
# Process chosen sequence
|
||||
chosen_length = min(chosen_lengths[j], max_seq_length)
|
||||
chosen_arr[j, :chosen_length] = batch[j]['chosen'][:chosen_length]
|
||||
chosen_masks[j, :chosen_length] = 1.0
|
||||
|
||||
# Process rejected sequence
|
||||
rejected_length = min(rejected_lengths[j], max_seq_length)
|
||||
rejected_arr[j, :rejected_length] = batch[j]['rejected'][:rejected_length]
|
||||
rejected_masks[j, :rejected_length] = 1.0
|
||||
|
||||
yield (mx.array(chosen_arr), mx.array(rejected_arr),
|
||||
mx.array(chosen_masks), mx.array(rejected_masks))
|
||||
|
||||
if not train:
|
||||
break
|
||||
|
||||
|
||||
def evaluate_dpo(
|
||||
model,
|
||||
reference_model,
|
||||
dataset,
|
||||
tokenizer,
|
||||
batch_size,
|
||||
num_batches,
|
||||
beta: float,
|
||||
delta: float,
|
||||
max_seq_length=2048,
|
||||
loss_fn: callable = dpo_loss,
|
||||
loss_type="sigmoid",
|
||||
):
|
||||
"""
|
||||
Modified evaluate function for DPO training.
|
||||
"""
|
||||
all_losses = 0
|
||||
all_rewards = mx.zeros((2,)) # [chosen_reward, rejected_reward]
|
||||
ntokens = 0
|
||||
|
||||
index_iterator = iter(range(num_batches)) if num_batches != -1 else iter(int, 1)
|
||||
|
||||
for _, batch in zip(
|
||||
index_iterator,
|
||||
iterate_dpo_batches(
|
||||
dataset=dataset,
|
||||
tokenizer=tokenizer,
|
||||
batch_size=batch_size,
|
||||
max_seq_length=max_seq_length,
|
||||
),
|
||||
):
|
||||
chosen, rejected, chosen_masks, rejected_masks = batch
|
||||
loss, reward, toks = loss_fn(
|
||||
model=model,
|
||||
reference_teacher_model=reference_model,
|
||||
chosen=chosen,
|
||||
rejected=rejected,
|
||||
chosen_masks=chosen_masks,
|
||||
rejected_masks=rejected_masks,
|
||||
loss_type=loss_type,
|
||||
beta=beta,
|
||||
delta=delta,
|
||||
)
|
||||
|
||||
all_losses += loss * toks
|
||||
all_rewards += reward
|
||||
ntokens += toks
|
||||
mx.eval(all_losses, all_rewards, ntokens)
|
||||
|
||||
all_losses = mx.distributed.all_sum(all_losses)
|
||||
all_rewards = mx.distributed.all_sum(all_rewards)
|
||||
ntokens = mx.distributed.all_sum(ntokens)
|
||||
|
||||
return (all_losses / ntokens).item(), all_rewards.tolist()
|
||||
|
||||
def train_dpo(
|
||||
model,
|
||||
reference_model,
|
||||
tokenizer,
|
||||
optimizer,
|
||||
train_dataset,
|
||||
val_dataset,
|
||||
args: DPOTrainingArgs = DPOTrainingArgs(),
|
||||
loss_fn: callable = dpo_loss,
|
||||
training_callback: TrainingCallback = None,
|
||||
loss_type="sigmoid",
|
||||
):
|
||||
"""
|
||||
Modified training function for DPO.
|
||||
"""
|
||||
print(f"Starting DPO training..., iters: {args.iters}")
|
||||
world = mx.distributed.init()
|
||||
world_size = world.size()
|
||||
rank = world.rank()
|
||||
if world_size > 1:
|
||||
print(f"Node {rank} of {world_size}")
|
||||
|
||||
if args.grad_checkpoint:
|
||||
grad_checkpoint(model.layers[0])
|
||||
|
||||
state = [model.state, optimizer.state]
|
||||
|
||||
def step(batch):
|
||||
chosen, rejected, chosen_masks, rejected_masks = batch
|
||||
|
||||
# Remove loss_type from the call
|
||||
(loss, reward, toks), grad = loss_value_and_grad(
|
||||
model,
|
||||
reference_model,
|
||||
chosen,
|
||||
rejected,
|
||||
chosen_masks,
|
||||
rejected_masks
|
||||
)
|
||||
|
||||
# All reduce the gradients if running in distributed mode
|
||||
grad = average_gradients(grad)
|
||||
|
||||
# Model update
|
||||
optimizer.update(model, grad)
|
||||
|
||||
return loss, reward, toks
|
||||
|
||||
# Create a wrapper function that includes all required arguments
|
||||
def loss_wrapper(model, ref_model, chosen, rejected, chosen_masks, rejected_masks):
|
||||
return loss_fn(
|
||||
model=model,
|
||||
reference_teacher_model=ref_model,
|
||||
chosen=chosen,
|
||||
rejected=rejected,
|
||||
chosen_masks=chosen_masks,
|
||||
rejected_masks=rejected_masks,
|
||||
beta=args.beta,
|
||||
delta=args.delta,
|
||||
loss_type=loss_type,
|
||||
is_reference_free=args.is_reference_free
|
||||
)
|
||||
|
||||
# Create value_and_grad with the wrapper
|
||||
loss_value_and_grad = nn.value_and_grad(model, loss_wrapper)
|
||||
|
||||
losses = 0
|
||||
rewards = mx.zeros((2,))
|
||||
n_tokens = 0
|
||||
steps = 0
|
||||
trained_tokens = 0
|
||||
|
||||
# Main training loop
|
||||
start = time.perf_counter()
|
||||
for it, batch in zip(
|
||||
range(1, args.iters + 1),
|
||||
iterate_dpo_batches(
|
||||
dataset=train_dataset,
|
||||
tokenizer=tokenizer,
|
||||
batch_size=args.batch_size,
|
||||
max_seq_length=args.max_seq_length,
|
||||
train=True,
|
||||
),
|
||||
):
|
||||
# Report validation loss if needed
|
||||
if it == 1 or it % args.steps_per_eval == 0 or it == args.iters:
|
||||
stop = time.perf_counter()
|
||||
val_loss, val_rewards = evaluate_dpo(
|
||||
model=model,
|
||||
reference_model=reference_model,
|
||||
dataset=val_dataset,
|
||||
tokenizer=tokenizer,
|
||||
batch_size=args.batch_size,
|
||||
num_batches=args.val_batches,
|
||||
max_seq_length=args.max_seq_length,
|
||||
loss_fn=loss_fn,
|
||||
beta=args.beta,
|
||||
delta=args.delta,
|
||||
loss_type=loss_type,
|
||||
)
|
||||
val_time = time.perf_counter() - stop
|
||||
if rank == 0:
|
||||
print(
|
||||
f"Iter {it}: "
|
||||
f"Val loss {val_loss:.3f}, "
|
||||
f"Val chosen reward {val_rewards[0]:.3f}, "
|
||||
f"Val rejected reward {val_rewards[1]:.3f}, "
|
||||
f"Val took {val_time:.3f}s",
|
||||
flush=True,
|
||||
)
|
||||
|
||||
if training_callback is not None:
|
||||
val_info = {
|
||||
"iteration": it,
|
||||
"val_loss": val_loss,
|
||||
"val_chosen_reward": val_rewards[0],
|
||||
"val_rejected_reward": val_rewards[1],
|
||||
"val_time": val_time,
|
||||
}
|
||||
training_callback.on_val_loss_report(val_info)
|
||||
|
||||
start = time.perf_counter()
|
||||
|
||||
loss, reward, toks = step(batch)
|
||||
losses += loss
|
||||
rewards += reward
|
||||
n_tokens += toks
|
||||
steps += 1
|
||||
mx.eval(state, losses, rewards, n_tokens)
|
||||
|
||||
# Report training loss if needed
|
||||
if it % args.steps_per_report == 0 or it == args.iters:
|
||||
stop = time.perf_counter()
|
||||
|
||||
train_loss = mx.distributed.all_sum(losses).item()
|
||||
train_loss /= steps * world_size
|
||||
train_rewards = mx.distributed.all_sum(rewards).tolist()
|
||||
train_rewards = [r / (steps * world_size) for r in train_rewards]
|
||||
n_tokens = mx.distributed.all_sum(n_tokens).item()
|
||||
learning_rate = optimizer.learning_rate.item()
|
||||
it_sec = args.steps_per_report / (stop - start)
|
||||
tokens_sec = float(n_tokens) / (stop - start)
|
||||
trained_tokens += n_tokens
|
||||
peak_mem = mx.metal.get_peak_memory() / 1e9
|
||||
|
||||
if rank == 0:
|
||||
print(
|
||||
f"Iter {it}: Train loss {train_loss:.3f}, "
|
||||
f"Chosen reward {train_rewards[0]:.3f}, "
|
||||
f"Rejected reward {train_rewards[1]:.3f}, "
|
||||
f"Learning Rate {learning_rate:.3e}, "
|
||||
f"It/sec {it_sec:.3f}, "
|
||||
f"Tokens/sec {tokens_sec:.3f}, "
|
||||
f"Trained Tokens {trained_tokens}, "
|
||||
f"Peak mem {peak_mem:.3f} GB",
|
||||
flush=True,
|
||||
)
|
||||
|
||||
if training_callback is not None:
|
||||
train_info = {
|
||||
"iteration": it,
|
||||
"train_loss": train_loss,
|
||||
"train_chosen_reward": train_rewards[0],
|
||||
"train_rejected_reward": train_rewards[1],
|
||||
"learning_rate": learning_rate,
|
||||
"iterations_per_second": it_sec,
|
||||
"tokens_per_second": tokens_sec,
|
||||
"trained_tokens": trained_tokens,
|
||||
"peak_memory": peak_mem,
|
||||
}
|
||||
training_callback.on_train_loss_report(train_info)
|
||||
|
||||
losses = 0
|
||||
rewards = mx.zeros((2,))
|
||||
n_tokens = 0
|
||||
steps = 0
|
||||
start = time.perf_counter()
|
||||
|
||||
# Save adapter weights
|
||||
if it % args.steps_per_save == 0:
|
||||
adapter_weights = dict(tree_flatten(model.trainable_parameters()))
|
||||
mx.save_safetensors(str(args.adapter_file), adapter_weights)
|
||||
checkpoint = (
|
||||
Path(args.adapter_file).parent / f"{it:07d}_adapters.safetensors"
|
||||
)
|
||||
mx.save_safetensors(str(checkpoint), adapter_weights)
|
||||
print(
|
||||
f"Iter {it}: Saved adapter weights to "
|
||||
f"{args.adapter_file} and {checkpoint}."
|
||||
)
|
||||
|
||||
# Save final weights
|
||||
adapter_weights = dict(tree_flatten(model.trainable_parameters()))
|
||||
mx.save_safetensors(str(args.adapter_file), adapter_weights)
|
||||
print(f"Saved final weights to {args.adapter_file}.")
|
Loading…
Reference in New Issue
Block a user