Separate model conversion and loading

This commit is contained in:
bofenghuang 2023-12-29 16:36:51 +01:00
parent 81183c3091
commit 21f28ccd55
3 changed files with 198 additions and 214 deletions

View File

@ -2,19 +2,200 @@
import argparse
import copy
import hashlib
import json
import os
import urllib
import warnings
from dataclasses import asdict
from pathlib import Path
from typing import List
import mlx.core as mx
import mlx.nn as nn
import numpy as np
import torch
from mlx.utils import tree_flatten, tree_map, tree_unflatten
from tqdm import tqdm
from whisper.load_models import load_torch_model, torch_to_mlx
from whisper import torch_whisper
from whisper.whisper import ModelDimensions, Whisper
MODEL_DTYPES = {"float16", "float32"}
_VALID_DTYPES = {"float16", "float32"}
_MODELS = {
"tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt",
"tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt",
"base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt",
"base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt",
"small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt",
"small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt",
"medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt",
"medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt",
"large-v1": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large-v1.pt",
"large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt",
"large-v3": "https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt",
"large": "https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt",
}
# base85-encoded (n_layers, n_heads) boolean arrays indicating the cross-attention heads that are
# highly correlated to the word-level timing, i.e. the alignment between audio and text tokens.
_ALIGNMENT_HEADS = {
"tiny.en": b"ABzY8J1N>@0{>%R00Bk>$p{7v037`oCl~+#00",
"tiny": b"ABzY8bu8Lr0{>%RKn9Fp%m@SkK7Kt=7ytkO",
"base.en": b"ABzY8;40c<0{>%RzzG;p*o+Vo09|#PsxSZm00",
"base": b"ABzY8KQ!870{>%RzyTQH3`Q^yNP!>##QT-<FaQ7m",
"small.en": b"ABzY8>?_)10{>%RpeA61k&I|OI3I$65C{;;pbCHh0B{qLQ;+}v00",
"small": b"ABzY8DmU6=0{>%Rpa?J`kvJ6qF(V^F86#Xh7JUGMK}P<N0000",
"medium.en": b"ABzY8usPae0{>%R7<zz_OvQ{)4kMa0BMw6u5rT}kRKX;$NfYBv00*Hl@qhsU00",
"medium": b"ABzY8B0Jh+0{>%R7}kK1fFL7w6%<-Pf*t^=N)Qr&0RR9",
"large-v1": b"ABzY8r9j$a0{>%R7#4sLmoOs{s)o3~84-RPdcFk!JR<kSfC2yj",
"large-v2": b"ABzY8zd+h!0{>%R7=D0pU<_bnWW*tkYAhobTNnu$jnkEkXqp)j;w1Tzk)UH3X%SZd&fFZ2fC2yj",
"large-v3": b"ABzY8gWO1E0{>%R7(9S+Kn!D~%ngiGaR?*L!iJG9p-nab0JQ=-{D1-g00",
"large": b"ABzY8gWO1E0{>%R7(9S+Kn!D~%ngiGaR?*L!iJG9p-nab0JQ=-{D1-g00",
}
def _download(url: str, root: str) -> str:
os.makedirs(root, exist_ok=True)
expected_sha256 = url.split("/")[-2]
download_target = os.path.join(root, os.path.basename(url))
if os.path.exists(download_target) and not os.path.isfile(download_target):
raise RuntimeError(f"{download_target} exists and is not a regular file")
if os.path.isfile(download_target):
with open(download_target, "rb") as f:
model_bytes = f.read()
if hashlib.sha256(model_bytes).hexdigest() == expected_sha256:
return download_target
else:
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
with tqdm(
total=int(source.info().get("Content-Length")),
ncols=80,
unit="iB",
unit_scale=True,
unit_divisor=1024,
) as loop:
while True:
buffer = source.read(8192)
if not buffer:
break
output.write(buffer)
loop.update(len(buffer))
model_bytes = open(download_target, "rb").read()
if hashlib.sha256(model_bytes).hexdigest() != expected_sha256:
raise RuntimeError(
"Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model."
)
return download_target
def available_models() -> List[str]:
"""Returns the names of available models"""
return list(_MODELS.keys())
def load_torch_model(
name_or_path: str,
download_root: str = None,
) -> torch_whisper.Whisper:
"""
Load a Whisper ASR model
Parameters
----------
name_or_path : str
one of the official model names listed by `whisper.available_models()` or a local Pytorch checkpoint in OpenAI's format
download_root: str
path to download the model files; by default, it uses "~/.cache/whisper"
Returns
-------
model : Whisper
The Whisper ASR model instance
"""
if download_root is None:
download_root = os.path.join(os.path.expanduser("~"), ".cache/whisper")
# todo: accept alignment_heads of local Pytorch checkpoint
alignment_heads = None
if name_or_path in _MODELS:
alignment_heads = _ALIGNMENT_HEADS[name_or_path]
name_or_path = _download(_MODELS[name_or_path], download_root)
elif not Path(name_or_path).is_file():
raise RuntimeError(f"Model {name_or_path} is neither found in {available_models()} nor as a local path")
with open(name_or_path, "rb") as fp:
checkpoint = torch.load(fp)
dims = torch_whisper.ModelDimensions(**checkpoint["dims"])
model = torch_whisper.Whisper(dims)
model.load_state_dict(checkpoint["model_state_dict"])
if alignment_heads is not None:
model.set_alignment_heads(alignment_heads)
return model
def convert(model, rules=None):
params = {}
if rules is not None and type(model) in rules:
out = rules[type(model)](model, rules)
return out
if isinstance(model, torch.Tensor):
return mx.array(model.detach().numpy())
if isinstance(model, torch.nn.ModuleList):
return [convert(n, rules) for n in model.children()]
if isinstance(model, torch.nn.Conv1d):
return {
"weight": convert(model.weight).transpose(0, 2, 1),
"bias": convert(model.bias),
}
for k, n in model.named_children():
if k in rules:
params.update(rules[k](n, rules))
else:
params[k] = convert(n, rules)
for k, p in model.named_parameters(recurse=False):
params[k] = convert(p)
return params
def torch_to_mlx(
torch_model: torch_whisper.Whisper,
dtype: mx.Dtype = mx.float16,
) -> Whisper:
def convert_rblock(model, rules):
children = dict(model.named_children())
mlp = list(children.pop("mlp").children())
params = {
"mlp1": convert(mlp[0], rules),
"mlp2": convert(mlp[-1], rules),
}
for k, n in children.items():
params[k] = convert(n, rules)
return params
rules = {
torch_whisper.ResidualAttentionBlock: convert_rblock,
}
params = convert(torch_model, rules)
mlx_model = Whisper(torch_model.dims, dtype)
params = tree_map(lambda p: p.astype(dtype), params)
mlx_model.update(params)
return mlx_model
def quantize(weights, config, args):
@ -49,7 +230,7 @@ if __name__ == "__main__":
parser.add_argument(
"--mlx-path",
type=str,
default="mlx_model",
default="mlx_models/tiny",
help="The path to save the MLX model.",
)
parser.add_argument(
@ -78,7 +259,7 @@ if __name__ == "__main__":
)
args = parser.parse_args()
assert args.dtype in MODEL_DTYPES, f"dtype {args.dtype} not found in {MODEL_DTYPES}"
assert args.dtype in _VALID_DTYPES, f"dtype {args.dtype} not found in {_VALID_DTYPES}"
dtype = getattr(mx, args.dtype)
print("[INFO] Loading")

View File

@ -1,213 +1,20 @@
# Copyright © 2023 Apple Inc.
import glob
import hashlib
import json
import os
import urllib
import warnings
from pathlib import Path
from typing import List
import mlx.core as mx
import mlx.nn as nn
import torch
from mlx.utils import tree_map, tree_unflatten
from tqdm import tqdm
from mlx.utils import tree_unflatten
from . import torch_whisper, whisper
_MODELS = {
"tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt",
"tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt",
"base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt",
"base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt",
"small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt",
"small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt",
"medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt",
"medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt",
"large-v1": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large-v1.pt",
"large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt",
"large-v3": "https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt",
"large": "https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt",
}
# base85-encoded (n_layers, n_heads) boolean arrays indicating the cross-attention heads that are
# highly correlated to the word-level timing, i.e. the alignment between audio and text tokens.
_ALIGNMENT_HEADS = {
"tiny.en": b"ABzY8J1N>@0{>%R00Bk>$p{7v037`oCl~+#00",
"tiny": b"ABzY8bu8Lr0{>%RKn9Fp%m@SkK7Kt=7ytkO",
"base.en": b"ABzY8;40c<0{>%RzzG;p*o+Vo09|#PsxSZm00",
"base": b"ABzY8KQ!870{>%RzyTQH3`Q^yNP!>##QT-<FaQ7m",
"small.en": b"ABzY8>?_)10{>%RpeA61k&I|OI3I$65C{;;pbCHh0B{qLQ;+}v00",
"small": b"ABzY8DmU6=0{>%Rpa?J`kvJ6qF(V^F86#Xh7JUGMK}P<N0000",
"medium.en": b"ABzY8usPae0{>%R7<zz_OvQ{)4kMa0BMw6u5rT}kRKX;$NfYBv00*Hl@qhsU00",
"medium": b"ABzY8B0Jh+0{>%R7}kK1fFL7w6%<-Pf*t^=N)Qr&0RR9",
"large-v1": b"ABzY8r9j$a0{>%R7#4sLmoOs{s)o3~84-RPdcFk!JR<kSfC2yj",
"large-v2": b"ABzY8zd+h!0{>%R7=D0pU<_bnWW*tkYAhobTNnu$jnkEkXqp)j;w1Tzk)UH3X%SZd&fFZ2fC2yj",
"large-v3": b"ABzY8gWO1E0{>%R7(9S+Kn!D~%ngiGaR?*L!iJG9p-nab0JQ=-{D1-g00",
"large": b"ABzY8gWO1E0{>%R7(9S+Kn!D~%ngiGaR?*L!iJG9p-nab0JQ=-{D1-g00",
}
def _download(url: str, root: str) -> str:
os.makedirs(root, exist_ok=True)
expected_sha256 = url.split("/")[-2]
download_target = os.path.join(root, os.path.basename(url))
if os.path.exists(download_target) and not os.path.isfile(download_target):
raise RuntimeError(f"{download_target} exists and is not a regular file")
if os.path.isfile(download_target):
with open(download_target, "rb") as f:
model_bytes = f.read()
if hashlib.sha256(model_bytes).hexdigest() == expected_sha256:
return download_target
else:
warnings.warn(
f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file"
)
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
with tqdm(
total=int(source.info().get("Content-Length")),
ncols=80,
unit="iB",
unit_scale=True,
unit_divisor=1024,
) as loop:
while True:
buffer = source.read(8192)
if not buffer:
break
output.write(buffer)
loop.update(len(buffer))
model_bytes = open(download_target, "rb").read()
if hashlib.sha256(model_bytes).hexdigest() != expected_sha256:
raise RuntimeError(
"Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model."
)
return download_target
def available_models() -> List[str]:
"""Returns the names of available models"""
return list(_MODELS.keys())
def load_torch_model(
name_or_path: str,
download_root: str = None,
) -> torch_whisper.Whisper:
"""
Load a Whisper ASR model
Parameters
----------
name_or_path : str
one of the official model names listed by `whisper.available_models()` or a local Pytorch checkpoint
download_root: str
path to download the model files; by default, it uses "~/.cache/whisper"
Returns
-------
model : Whisper
The Whisper ASR model instance
"""
if download_root is None:
download_root = os.path.join(os.path.expanduser("~"), ".cache/whisper")
if name_or_path in _MODELS:
name_or_path = _download(_MODELS[name_or_path], download_root)
elif not Path(name_or_path).is_file():
raise RuntimeError(f"Model {name_or_path} is neither found in {available_models()} nor as a local path")
alignment_heads = _ALIGNMENT_HEADS.get(name_or_path)
with open(name_or_path, "rb") as fp:
checkpoint = torch.load(fp)
dims = torch_whisper.ModelDimensions(**checkpoint["dims"])
model = torch_whisper.Whisper(dims)
model.load_state_dict(checkpoint["model_state_dict"])
if alignment_heads is not None:
model.set_alignment_heads(alignment_heads)
return model
def convert(model, rules=None):
params = {}
if rules is not None and type(model) in rules:
out = rules[type(model)](model, rules)
return out
if isinstance(model, torch.Tensor):
return mx.array(model.detach().numpy())
if isinstance(model, torch.nn.ModuleList):
return [convert(n, rules) for n in model.children()]
if isinstance(model, torch.nn.Conv1d):
return {
"weight": convert(model.weight).transpose(0, 2, 1),
"bias": convert(model.bias),
}
for k, n in model.named_children():
if k in rules:
params.update(rules[k](n, rules))
else:
params[k] = convert(n, rules)
for k, p in model.named_parameters(recurse=False):
params[k] = convert(p)
return params
def torch_to_mlx(
torch_model: torch_whisper.Whisper,
dtype: mx.Dtype = mx.float16,
) -> whisper.Whisper:
def convert_rblock(model, rules):
children = dict(model.named_children())
mlp = list(children.pop("mlp").children())
params = {
"mlp1": convert(mlp[0], rules),
"mlp2": convert(mlp[-1], rules),
}
for k, n in children.items():
params[k] = convert(n, rules)
return params
rules = {
torch_whisper.ResidualAttentionBlock: convert_rblock,
}
params = convert(torch_model, rules)
mlx_model = whisper.Whisper(torch_model.dims, dtype)
params = tree_map(lambda p: p.astype(dtype), params)
mlx_model.update(params)
return mlx_model
from . import whisper
def load_model(
name_or_path: str,
download_root: str = None,
folder: str,
dtype: mx.Dtype = mx.float32,
) -> whisper.Whisper:
if name_or_path in _MODELS:
print(f"[INFO] Loading and converting {name_or_path} model")
return torch_to_mlx(load_torch_model(name_or_path, download_root), dtype)
elif not (glob.glob(f"{name_or_path}/weights.npz") and glob.glob(f"{name_or_path}/config.json")):
raise ValueError(
f"{name_or_path} not found in {available_models()}. Ensure that weights.npz and config.json files are"
" present in the specified path"
)
model_path = Path(name_or_path)
model_path = Path(folder)
with open(str(model_path / "config.json"), "r") as f:
config = json.loads(f.read())
@ -225,7 +32,5 @@ def load_model(
nn.QuantizedLinear.quantize_module(model, **quantization)
model.update(weights)
mx.eval(model.parameters())
return model

View File

@ -40,20 +40,20 @@ def _format_timestamp(seconds: float):
class ModelHolder:
model = None
model_name_or_path = None
model_path = None
@classmethod
def get_model(cls, model_name_or_path: str, dtype: mx.Dtype):
if cls.model is None or model_name_or_path != cls.model_name_or_path:
cls.model = load_model(model_name_or_path, dtype=dtype)
cls.model_name_or_path = model_name_or_path
def get_model(cls, model_path: str, dtype: mx.Dtype):
if cls.model is None or model_path != cls.model_path:
cls.model = load_model(model_path, dtype=dtype)
cls.model_path = model_path
return cls.model
def transcribe(
audio: Union[str, np.ndarray, mx.array],
*,
model_name_or_path: str = "tiny",
model_path: str = "mlx_models/tiny",
verbose: Optional[bool] = None,
temperature: Union[float, Tuple[float, ...]] = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
compression_ratio_threshold: Optional[float] = 2.4,
@ -73,10 +73,8 @@ def transcribe(
audio: Union[str, np.ndarray, mx.array]
The path to the audio file to open, or the audio waveform
model_name_or_path: str
The Whisper model. Can be any of ["tiny", "base", "small", "medium", "large"],
or a local folder in MLX format.
Default is "tiny".
model_path: str
The path to the Whisper model that has been converted to MLX format.
verbose: bool
Whether to display the text being decoded to the console. If True, displays all the details,
@ -116,7 +114,7 @@ def transcribe(
"""
dtype = mx.float16 if decode_options.get("fp16", True) else mx.float32
model = ModelHolder.get_model(model_name_or_path, dtype)
model = ModelHolder.get_model(model_path, dtype)
# Pad 30-seconds of silence to the input audio, for slicing
mel = log_mel_spectrogram(audio, n_mels=model.dims.n_mels, padding=N_SAMPLES)