mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-09-01 04:14:38 +08:00
Add llms subdir + update README (#145)
* add llms subdir + update README * nits * use same pre-commit as mlx * update readmes a bit * format
This commit is contained in:
390
llms/llama/llama.py
Normal file
390
llms/llama/llama.py
Normal file
@@ -0,0 +1,390 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import time
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from mlx.utils import tree_unflatten
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArgs:
|
||||
dim: int
|
||||
n_layers: int
|
||||
head_dim: int
|
||||
hidden_dim: int
|
||||
n_heads: int
|
||||
n_kv_heads: int
|
||||
norm_eps: float
|
||||
vocab_size: int
|
||||
rope_theta: float
|
||||
rope_traditional: bool = True
|
||||
|
||||
|
||||
class RMSNorm(nn.Module):
|
||||
def __init__(self, dims: int, eps: float = 1e-5):
|
||||
super().__init__()
|
||||
self.weight = mx.ones((dims,))
|
||||
self.eps = eps
|
||||
|
||||
def _norm(self, x):
|
||||
return x * mx.rsqrt(x.square().mean(-1, keepdims=True) + self.eps)
|
||||
|
||||
def __call__(self, x):
|
||||
output = self._norm(x.astype(mx.float32)).astype(x.dtype)
|
||||
return self.weight * output
|
||||
|
||||
|
||||
class RoPE(nn.RoPE):
|
||||
def __init__(self, dims: int, traditional: bool = False, base: float = 10000):
|
||||
super().__init__(dims, traditional)
|
||||
self.base = base
|
||||
|
||||
def __call__(self, x, offset: int = 0):
|
||||
shape = x.shape
|
||||
x = mx.reshape(x, (-1, shape[-2], shape[-1]))
|
||||
N = x.shape[1] + offset
|
||||
costheta, sintheta = RoPE.create_cos_sin_theta(
|
||||
N, self.dims, offset=offset, base=self.base, dtype=x.dtype
|
||||
)
|
||||
|
||||
rope = (
|
||||
self._compute_traditional_rope if self.traditional else self._compute_rope
|
||||
)
|
||||
rx = rope(costheta, sintheta, x)
|
||||
|
||||
return mx.reshape(rx, shape)
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
|
||||
self.n_heads: int = args.n_heads
|
||||
self.n_kv_heads: int = args.n_kv_heads
|
||||
|
||||
self.repeats = self.n_heads // self.n_kv_heads
|
||||
|
||||
self.scale = self.args.head_dim**-0.5
|
||||
|
||||
self.wq = nn.Linear(args.dim, args.n_heads * args.head_dim, bias=False)
|
||||
self.wk = nn.Linear(args.dim, args.n_kv_heads * args.head_dim, bias=False)
|
||||
self.wv = nn.Linear(args.dim, args.n_kv_heads * args.head_dim, bias=False)
|
||||
self.wo = nn.Linear(args.n_heads * args.head_dim, args.dim, bias=False)
|
||||
self.rope = RoPE(
|
||||
args.head_dim, traditional=args.rope_traditional, base=args.rope_theta
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
queries, keys, values = self.wq(x), self.wk(x), self.wv(x)
|
||||
|
||||
# Prepare the queries, keys and values for the attention computation
|
||||
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||||
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||
|
||||
def repeat(a):
|
||||
a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2)
|
||||
return a.reshape([B, self.n_heads, L, -1])
|
||||
|
||||
keys, values = map(repeat, (keys, values))
|
||||
|
||||
if cache is not None:
|
||||
key_cache, value_cache = cache
|
||||
queries = self.rope(queries, offset=key_cache.shape[2])
|
||||
keys = self.rope(keys, offset=key_cache.shape[2])
|
||||
keys = mx.concatenate([key_cache, keys], axis=2)
|
||||
values = mx.concatenate([value_cache, values], axis=2)
|
||||
else:
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
scores = (queries * self.scale) @ keys.transpose(0, 1, 3, 2)
|
||||
if mask is not None:
|
||||
scores += mask
|
||||
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
|
||||
output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.wo(output), (keys, values)
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
|
||||
self.w1 = nn.Linear(args.dim, args.hidden_dim, bias=False)
|
||||
self.w2 = nn.Linear(args.hidden_dim, args.dim, bias=False)
|
||||
self.w3 = nn.Linear(args.dim, args.hidden_dim, bias=False)
|
||||
|
||||
def __call__(self, x) -> mx.array:
|
||||
return self.w2(nn.silu(self.w1(x)) * self.w3(x))
|
||||
|
||||
|
||||
class TransformerBlock(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.n_heads = args.n_heads
|
||||
self.dim = args.dim
|
||||
self.attention = Attention(args)
|
||||
self.feed_forward = FeedForward(args=args)
|
||||
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
||||
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
||||
self.args = args
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
) -> mx.array:
|
||||
r, cache = self.attention(self.attention_norm(x), mask, cache)
|
||||
h = x + r
|
||||
r = self.feed_forward(self.ffn_norm(h))
|
||||
out = h + r
|
||||
return out, cache
|
||||
|
||||
|
||||
class Llama(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.vocab_size = args.vocab_size
|
||||
self.tok_embeddings = nn.Embedding(args.vocab_size, args.dim)
|
||||
self.layers = [TransformerBlock(args=args) for _ in range(args.n_layers)]
|
||||
self.norm = RMSNorm(args.dim, eps=args.norm_eps)
|
||||
self.output = nn.Linear(args.dim, args.vocab_size, bias=False)
|
||||
|
||||
def __call__(self, x):
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
||||
mask = mask.astype(self.tok_embeddings.weight.dtype)
|
||||
|
||||
x = self.tok_embeddings(x)
|
||||
for l in self.layers:
|
||||
x, _ = l(x, mask)
|
||||
x = self.norm(x)
|
||||
return self.output(x)
|
||||
|
||||
def generate(self, x, temp=1.0):
|
||||
cache = []
|
||||
|
||||
# Make an additive causal mask. We will need that to process the prompt.
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
||||
mask = mask.astype(self.tok_embeddings.weight.dtype)
|
||||
|
||||
# First we process the prompt x the same was as in __call__ but
|
||||
# save the caches in cache
|
||||
x = self.tok_embeddings(x)
|
||||
for l in self.layers:
|
||||
x, c = l(x, mask=mask)
|
||||
# We store the per layer cache in a simple python list
|
||||
cache.append(c)
|
||||
x = self.norm(x)
|
||||
# We only care about the last logits that generate the next token
|
||||
y = self.output(x[:, -1])
|
||||
y = mx.random.categorical(y * (1 / temp))
|
||||
|
||||
# y now has size [1]
|
||||
# Since MLX is lazily evaluated nothing is computed yet.
|
||||
# Calling y.item() would force the computation to happen at
|
||||
# this point but we can also choose not to do that and let the
|
||||
# user choose when to start the computation.
|
||||
yield y
|
||||
|
||||
# Now we parsed the prompt and generated the first token we
|
||||
# need to feed it back into the model and loop to generate the
|
||||
# rest.
|
||||
while True:
|
||||
# Unsqueezing the last dimension to add a sequence length
|
||||
# dimension of 1
|
||||
x = y[:, None]
|
||||
|
||||
x = self.tok_embeddings(x)
|
||||
for i in range(len(cache)):
|
||||
# We are overwriting the arrays in the cache list. When
|
||||
# the computation will happen, MLX will be discarding the
|
||||
# old cache the moment it is not needed anymore.
|
||||
x, cache[i] = self.layers[i](x, mask=None, cache=cache[i])
|
||||
x = self.norm(x)
|
||||
y = self.output(x[:, -1])
|
||||
y = mx.random.categorical(y * (1 / temp))
|
||||
|
||||
yield y
|
||||
|
||||
|
||||
def tic():
|
||||
return time.time()
|
||||
|
||||
|
||||
def toc(msg, start):
|
||||
end = time.time()
|
||||
return f"[INFO] {msg}: {end - start:.3f} s"
|
||||
|
||||
|
||||
def generate(args):
|
||||
|
||||
input("Press enter to start generation")
|
||||
print("------")
|
||||
print(args.prompt)
|
||||
x = mx.array([[tokenizer.bos_id()] + tokenizer.encode(args.prompt)])
|
||||
skip = 0
|
||||
prompt_processing = None
|
||||
tokens = []
|
||||
start = tic()
|
||||
for token in model.generate(x, args.temp):
|
||||
tokens.append(token)
|
||||
|
||||
if len(tokens) == 1:
|
||||
# Actually perform the computation to measure the prompt processing time
|
||||
mx.eval(token)
|
||||
prompt_processing = toc("Prompt processing", start)
|
||||
|
||||
if len(tokens) >= args.max_tokens:
|
||||
break
|
||||
|
||||
elif (len(tokens) % args.write_every) == 0:
|
||||
# It is perfectly ok to eval things we have already eval-ed.
|
||||
mx.eval(tokens)
|
||||
s = tokenizer.decode([t.item() for t in tokens])
|
||||
print(s[skip:], end="", flush=True)
|
||||
skip = len(s)
|
||||
|
||||
mx.eval(tokens)
|
||||
full_gen = toc("Full generation", start)
|
||||
s = tokenizer.decode([t.item() for t in tokens])
|
||||
print(s[skip:], flush=True)
|
||||
print("------")
|
||||
print(prompt_processing)
|
||||
print(full_gen)
|
||||
|
||||
|
||||
def few_shot_generate(args):
|
||||
def possible_end(s):
|
||||
word = "[Instruction]"
|
||||
for i in range(len(word) - 1, 0, -1):
|
||||
if s[-i:] == word[:i]:
|
||||
return 0
|
||||
if s[-len(word) :] == word:
|
||||
return 1
|
||||
return -1
|
||||
|
||||
def generate(question):
|
||||
x = mx.array([[tokenizer.bos_id()] + tokenizer.encode(question)])
|
||||
skip = 0
|
||||
prompt_processing = None
|
||||
tokens = []
|
||||
start = tic()
|
||||
for token in model.generate(x, args.temp):
|
||||
tokens.append(token)
|
||||
|
||||
if len(tokens) == 1:
|
||||
# Actually perform the computation to measure the prompt processing time
|
||||
mx.eval(token)
|
||||
prompt_processing = toc("Prompt processing", start)
|
||||
|
||||
if len(tokens) >= args.max_tokens:
|
||||
break
|
||||
|
||||
mx.eval(tokens)
|
||||
token_list = [t.item() for t in tokens]
|
||||
s = tokenizer.decode(token_list)
|
||||
|
||||
end = possible_end(s)
|
||||
if end == 0:
|
||||
continue
|
||||
if end == 1:
|
||||
skip = len(s)
|
||||
break
|
||||
|
||||
print(s[skip:], end="", flush=True)
|
||||
skip = len(s)
|
||||
if token_list[-1] == tokenizer.eos_id():
|
||||
break
|
||||
|
||||
mx.eval(tokens)
|
||||
full_gen = toc("Full generation", start)
|
||||
s = tokenizer.decode([t.item() for t in tokens])
|
||||
print(s[skip:], end="", flush=True)
|
||||
|
||||
print("[INFO] Loading few-shot examples from: {}".format(args.few_shot))
|
||||
prompt = open(args.few_shot).read().strip()
|
||||
while True:
|
||||
question = input("Ask a question: ")
|
||||
generate(prompt.replace("{}", question))
|
||||
print()
|
||||
|
||||
|
||||
def load_model(model_path):
|
||||
model_path = Path(model_path)
|
||||
weights = mx.load(str(model_path / "weights.npz"))
|
||||
with open(model_path / "params.json", "r") as f:
|
||||
config = json.loads(f.read())
|
||||
n_heads = config["n_heads"]
|
||||
if "n_kv_heads" not in config:
|
||||
config["n_kv_heads"] = n_heads
|
||||
if "head_dim" not in config:
|
||||
config["head_dim"] = config["dim"] // n_heads
|
||||
if "hidden_dim" not in config:
|
||||
config["hidden_dim"] = weights["layers.0.feed_forward.w1.weight"].shape[0]
|
||||
if config.get("vocab_size", -1) < 0:
|
||||
config["vocab_size"] = weights["output.weight"].shape[-1]
|
||||
if "rope_theta" not in config:
|
||||
config["rope_theta"] = 10000
|
||||
unused = ["multiple_of", "ffn_dim_multiplier"]
|
||||
for k in unused:
|
||||
if k in config:
|
||||
config.pop(k)
|
||||
model = Llama(ModelArgs(**config))
|
||||
model.update(tree_unflatten(list(weights.items())))
|
||||
return model
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Llama inference script")
|
||||
parser.add_argument(
|
||||
"model", help="Path to the model directory containing the MLX weights"
|
||||
)
|
||||
parser.add_argument("tokenizer", help="The sentencepiece tokenizer")
|
||||
parser.add_argument(
|
||||
"--prompt",
|
||||
help="The message to be processed by the model. Ignored when --few-shot is provided.",
|
||||
default="In the beginning the Universe was created.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--few-shot",
|
||||
help="Read a few shot prompt from a file (as in `sample_prompt.txt`).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max-tokens", "-m", type=int, default=100, help="How many tokens to generate"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--write-every", type=int, default=1, help="After how many tokens to detokenize"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--temp", type=float, default=0.8, help="The sampling temperature"
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
mx.random.seed(args.seed)
|
||||
|
||||
tokenizer = SentencePieceProcessor(model_file=args.tokenizer)
|
||||
print("[INFO] Loading model from disk.")
|
||||
model = load_model(args.model)
|
||||
if args.few_shot:
|
||||
few_shot_generate(args)
|
||||
else:
|
||||
generate(args)
|
Reference in New Issue
Block a user