mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-30 10:56:38 +08:00
Fix convert and tokenizer
This commit is contained in:
parent
702ecbb671
commit
2a9c5e8a8c
2
qwen/.gitignore
vendored
Normal file
2
qwen/.gitignore
vendored
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
weights.npz
|
||||||
|
config.json
|
@ -1,6 +1,8 @@
|
|||||||
import argparse
|
import argparse
|
||||||
from transformers import AutoModelForCausalLM
|
from transformers import AutoModelForCausalLM
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import json
|
||||||
|
|
||||||
|
|
||||||
def replace_key(key: str) -> str:
|
def replace_key(key: str) -> str:
|
||||||
@ -13,12 +15,18 @@ def replace_key(key: str) -> str:
|
|||||||
|
|
||||||
def convert(model_path: str = "Qwen/Qwen-1_8B"):
|
def convert(model_path: str = "Qwen/Qwen-1_8B"):
|
||||||
model = AutoModelForCausalLM.from_pretrained(
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
model_path, trust_remote_code=True
|
model_path, trust_remote_code=True, torch_dtype=torch.float16
|
||||||
)
|
)
|
||||||
state_dict = model.state_dict()
|
state_dict = model.state_dict()
|
||||||
weights = {replace_key(k): v.numpy() for k, v in state_dict.items()}
|
weights = {replace_key(k): v.numpy() for k, v in state_dict.items()}
|
||||||
np.savez("weights.npz", **weights)
|
np.savez("weights.npz", **weights)
|
||||||
|
|
||||||
|
# write config
|
||||||
|
config = model.config
|
||||||
|
config_dict = config.to_dict()
|
||||||
|
with open("config.json", "w") as f:
|
||||||
|
json.dump(config_dict, f)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser(description="Convert Qwen model to npz")
|
parser = argparse.ArgumentParser(description="Convert Qwen model to npz")
|
||||||
|
40
qwen/qwen.py
40
qwen/qwen.py
@ -2,6 +2,7 @@
|
|||||||
# This inference script is mainly for compatibility with the huggingface model of qwen.
|
# This inference script is mainly for compatibility with the huggingface model of qwen.
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
|
import json
|
||||||
import mlx.core as mx
|
import mlx.core as mx
|
||||||
import mlx.nn as nn
|
import mlx.nn as nn
|
||||||
|
|
||||||
@ -43,10 +44,8 @@ class QWenAttntion(nn.Module):
|
|||||||
|
|
||||||
self.proj_size = args.kv_channels * self.num_attention_heads
|
self.proj_size = args.kv_channels * self.num_attention_heads
|
||||||
|
|
||||||
self.c_attn = nn.Linear(
|
self.c_attn = nn.Linear(self.hidden_size, self.proj_size * 3, bias=True)
|
||||||
self.hidden_size, self.proj_size * 3, bias=True)
|
self.c_proj = nn.Linear(self.hidden_size, self.proj_size, bias=not args.no_bias)
|
||||||
self.c_proj = nn.Linear(
|
|
||||||
self.hidden_size, self.proj_size, bias=not args.no_bias)
|
|
||||||
|
|
||||||
self.scale = self.hidden_size_per_attention_head**-0.5
|
self.scale = self.hidden_size_per_attention_head**-0.5
|
||||||
|
|
||||||
@ -72,9 +71,6 @@ class QWenAttntion(nn.Module):
|
|||||||
q = self.rotary_emb(q)
|
q = self.rotary_emb(q)
|
||||||
k = self.rotary_emb(k)
|
k = self.rotary_emb(k)
|
||||||
|
|
||||||
q = q.astype(mx.float32)
|
|
||||||
k = k.astype(mx.float32)
|
|
||||||
|
|
||||||
scores = (q * self.scale) @ k.transpose(0, 1, 3, 2)
|
scores = (q * self.scale) @ k.transpose(0, 1, 3, 2)
|
||||||
|
|
||||||
if mask is not None:
|
if mask is not None:
|
||||||
@ -146,8 +142,7 @@ class QWen(nn.Module):
|
|||||||
|
|
||||||
mask = None
|
mask = None
|
||||||
if x.shape[1] > 1:
|
if x.shape[1] > 1:
|
||||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(
|
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
||||||
x.shape[1])
|
|
||||||
mask = mask.astype(x.dtype)
|
mask = mask.astype(x.dtype)
|
||||||
|
|
||||||
if cache is None:
|
if cache is None:
|
||||||
@ -178,12 +173,30 @@ def generate(prompt: mx.array, model: QWen, temp: 0.0):
|
|||||||
yield y
|
yield y
|
||||||
|
|
||||||
|
|
||||||
def load_model(tokenizer_path: str = "Qwen/Qwen-1_8B"):
|
def load_model(
|
||||||
model = QWen(ModelArgs())
|
tokenizer_path: str = "Qwen/Qwen-1_8B", config_path: str = "config.json"
|
||||||
|
):
|
||||||
|
model_args = ModelArgs()
|
||||||
|
|
||||||
|
with open(config_path, "r") as f:
|
||||||
|
config = json.load(f)
|
||||||
|
model_args.vocab_size = config["vocab_size"]
|
||||||
|
model_args.hidden_size = config["hidden_size"]
|
||||||
|
model_args.num_attention_heads = config["num_attention_heads"]
|
||||||
|
model_args.num_hidden_layers = config["num_hidden_layers"]
|
||||||
|
model_args.kv_channels = config["kv_channels"]
|
||||||
|
model_args.max_position_embeddings = config["max_position_embeddings"]
|
||||||
|
model_args.layer_norm_epsilon = config["layer_norm_epsilon"]
|
||||||
|
model_args.intermediate_size = config["intermediate_size"]
|
||||||
|
model_args.no_bias = config["no_bias"]
|
||||||
|
|
||||||
|
model = QWen(model_args)
|
||||||
|
|
||||||
weights = mx.load("weights.npz")
|
weights = mx.load("weights.npz")
|
||||||
model.update(tree_unflatten(list(weights.items())))
|
model.update(tree_unflatten(list(weights.items())))
|
||||||
tokenizer = AutoTokenizer.from_pretrained(
|
tokenizer = AutoTokenizer.from_pretrained(
|
||||||
tokenizer_path, trust_remote_code=True)
|
tokenizer_path, trust_remote_code=True, eos_token="<|endoftext|>"
|
||||||
|
)
|
||||||
return model, tokenizer
|
return model, tokenizer
|
||||||
|
|
||||||
|
|
||||||
@ -239,8 +252,7 @@ if __name__ == "__main__":
|
|||||||
if (len(tokens) % 10) == 0:
|
if (len(tokens) % 10) == 0:
|
||||||
mx.eval(tokens)
|
mx.eval(tokens)
|
||||||
eos_index = next(
|
eos_index = next(
|
||||||
(i for i, t in enumerate(tokens)
|
(i for i, t in enumerate(tokens) if t.item() == tokenizer.eos_token_id),
|
||||||
if t.item() == tokenizer.eos_token_id),
|
|
||||||
None,
|
None,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user