Fix convert and tokenizer

This commit is contained in:
Juni May 2023-12-18 16:59:51 +08:00
parent 702ecbb671
commit 2a9c5e8a8c
3 changed files with 37 additions and 15 deletions

2
qwen/.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
weights.npz
config.json

View File

@ -1,6 +1,8 @@
import argparse
from transformers import AutoModelForCausalLM
import numpy as np
import torch
import json
def replace_key(key: str) -> str:
@ -13,12 +15,18 @@ def replace_key(key: str) -> str:
def convert(model_path: str = "Qwen/Qwen-1_8B"):
model = AutoModelForCausalLM.from_pretrained(
model_path, trust_remote_code=True
model_path, trust_remote_code=True, torch_dtype=torch.float16
)
state_dict = model.state_dict()
weights = {replace_key(k): v.numpy() for k, v in state_dict.items()}
np.savez("weights.npz", **weights)
# write config
config = model.config
config_dict = config.to_dict()
with open("config.json", "w") as f:
json.dump(config_dict, f)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Convert Qwen model to npz")

View File

@ -2,6 +2,7 @@
# This inference script is mainly for compatibility with the huggingface model of qwen.
import argparse
import json
import mlx.core as mx
import mlx.nn as nn
@ -43,10 +44,8 @@ class QWenAttntion(nn.Module):
self.proj_size = args.kv_channels * self.num_attention_heads
self.c_attn = nn.Linear(
self.hidden_size, self.proj_size * 3, bias=True)
self.c_proj = nn.Linear(
self.hidden_size, self.proj_size, bias=not args.no_bias)
self.c_attn = nn.Linear(self.hidden_size, self.proj_size * 3, bias=True)
self.c_proj = nn.Linear(self.hidden_size, self.proj_size, bias=not args.no_bias)
self.scale = self.hidden_size_per_attention_head**-0.5
@ -72,9 +71,6 @@ class QWenAttntion(nn.Module):
q = self.rotary_emb(q)
k = self.rotary_emb(k)
q = q.astype(mx.float32)
k = k.astype(mx.float32)
scores = (q * self.scale) @ k.transpose(0, 1, 3, 2)
if mask is not None:
@ -146,8 +142,7 @@ class QWen(nn.Module):
mask = None
if x.shape[1] > 1:
mask = nn.MultiHeadAttention.create_additive_causal_mask(
x.shape[1])
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
mask = mask.astype(x.dtype)
if cache is None:
@ -178,12 +173,30 @@ def generate(prompt: mx.array, model: QWen, temp: 0.0):
yield y
def load_model(tokenizer_path: str = "Qwen/Qwen-1_8B"):
model = QWen(ModelArgs())
def load_model(
tokenizer_path: str = "Qwen/Qwen-1_8B", config_path: str = "config.json"
):
model_args = ModelArgs()
with open(config_path, "r") as f:
config = json.load(f)
model_args.vocab_size = config["vocab_size"]
model_args.hidden_size = config["hidden_size"]
model_args.num_attention_heads = config["num_attention_heads"]
model_args.num_hidden_layers = config["num_hidden_layers"]
model_args.kv_channels = config["kv_channels"]
model_args.max_position_embeddings = config["max_position_embeddings"]
model_args.layer_norm_epsilon = config["layer_norm_epsilon"]
model_args.intermediate_size = config["intermediate_size"]
model_args.no_bias = config["no_bias"]
model = QWen(model_args)
weights = mx.load("weights.npz")
model.update(tree_unflatten(list(weights.items())))
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_path, trust_remote_code=True)
tokenizer_path, trust_remote_code=True, eos_token="<|endoftext|>"
)
return model, tokenizer
@ -239,8 +252,7 @@ if __name__ == "__main__":
if (len(tokens) % 10) == 0:
mx.eval(tokens)
eos_index = next(
(i for i, t in enumerate(tokens)
if t.item() == tokenizer.eos_token_id),
(i for i, t in enumerate(tokens) if t.item() == tokenizer.eos_token_id),
None,
)