Updated CIFAR-10 ResNet example to use BatchNorm instead of LayerNorm (#257)

* replaced nn.LayerNorm by nn.BatchNorm

* mlx>=0.0.8 required

* updated default to 30 epochs instead of 100

* updated README after adding BatchNorm

* requires mlx>=0.0.9

* updated README.md with results for mlx-0.0.9
This commit is contained in:
Markus Enzweiler 2024-01-12 14:43:11 +01:00 committed by GitHub
parent 6217d7acd0
commit 2b61d9deb6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 10 additions and 13 deletions

View File

@ -36,16 +36,15 @@ python main.py --help
## Results
After training with the default `resnet20` architecture for 100 epochs, you
After training with the default `resnet20` architecture for 30 epochs, you
should see the following results:
```
Epoch: 99 | avg. Train loss 0.320 | avg. Train acc 0.888 | Throughput: 416.77 images/sec
Epoch: 99 | Test acc 0.807
Epoch: 29 | avg. Train loss 0.294 | avg. Train acc 0.897 | Throughput: 270.81 images/sec
Epoch: 29 | Test acc 0.841
```
Note this was run on an M1 Macbook Pro with 16GB RAM.
At the time of writing, `mlx` doesn't have built-in learning rate schedules,
or a `BatchNorm` layer. We intend to update this example once these features
are added.
At the time of writing, `mlx` doesn't have built-in learning rate schedules.
We intend to update this example once these features are added.

View File

@ -16,7 +16,7 @@ parser.add_argument(
help="model architecture",
)
parser.add_argument("--batch_size", type=int, default=256, help="batch size")
parser.add_argument("--epochs", type=int, default=100, help="number of epochs")
parser.add_argument("--epochs", type=int, default=30, help="number of epochs")
parser.add_argument("--lr", type=float, default=1e-3, help="learning rate")
parser.add_argument("--seed", type=int, default=0, help="random seed")
parser.add_argument("--cpu", action="store_true", help="use cpu only")

View File

@ -1,3 +1,3 @@
mlx
mlx>=0.0.9
mlx-data
numpy

View File

@ -1,8 +1,6 @@
"""
Implementation of ResNets for CIFAR-10 as per the original paper [https://arxiv.org/abs/1512.03385].
Configurations include ResNet-20, ResNet-32, ResNet-44, ResNet-56, ResNet-110, ResNet-1202.
There's no BatchNorm is mlx==0.0.4, using LayerNorm instead.
"""
from typing import Any
@ -46,12 +44,12 @@ class Block(nn.Module):
self.conv1 = nn.Conv2d(
in_dims, dims, kernel_size=3, stride=stride, padding=1, bias=False
)
self.bn1 = nn.LayerNorm(dims)
self.bn1 = nn.BatchNorm(dims)
self.conv2 = nn.Conv2d(
dims, dims, kernel_size=3, stride=1, padding=1, bias=False
)
self.bn2 = nn.LayerNorm(dims)
self.bn2 = nn.BatchNorm(dims)
if stride != 1:
self.shortcut = ShortcutA(dims)
@ -77,7 +75,7 @@ class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super().__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.LayerNorm(16)
self.bn1 = nn.BatchNorm(16)
self.layer1 = self._make_layer(block, 16, 16, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 16, 32, num_blocks[1], stride=2)