mirror of
				https://github.com/ml-explore/mlx-examples.git
				synced 2025-10-31 02:48:07 +08:00 
			
		
		
		
	MiniCPM implementation (#685)
* Added support for the MiniCPM architecture * Added support for the MiniCPM architecture * Updated utils.py and LORA.md * Updated utils.py and LORA.md * Update implementation details for MiniCPM architecture * Cleaning up * fixed the missing lm.head layer problem * Refactor Model class to dynamically handle tied and untied word embeddings * Quick update * added a dynamic rope scaling base calucaltion * Added support for the MiniCPM architecture * Added support for the MiniCPM architecture * Updated utils.py and LORA.md * Updated utils.py and LORA.md * Update implementation details for MiniCPM architecture * Cleaning up * fixed the missing lm.head layer problem * Refactor Model class to dynamically handle tied and untied word embeddings * added a dynamic rope scaling base calucaltion * quick fix and clean up * clean up again * removed the MiniCPMNorm class as its not used * forgot something, sorry * format * version bump --------- Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
		| @@ -11,16 +11,17 @@ LoRA (QLoRA).[^qlora] LoRA fine-tuning works with the following model families: | ||||
| - Qwen2 | ||||
| - Gemma | ||||
| - OLMo | ||||
| - MiniCPM | ||||
|  | ||||
| ## Contents | ||||
|  | ||||
| * [Run](#Run) | ||||
|   * [Fine-tune](#Fine-tune) | ||||
|   * [Evaluate](#Evaluate) | ||||
|   * [Generate](#Generate) | ||||
| * [Fuse](#Fuse) | ||||
| * [Data](#Data) | ||||
| * [Memory Issues](#Memory-Issues) | ||||
| - [Run](#Run) | ||||
|   - [Fine-tune](#Fine-tune) | ||||
|   - [Evaluate](#Evaluate) | ||||
|   - [Generate](#Generate) | ||||
| - [Fuse](#Fuse) | ||||
| - [Data](#Data) | ||||
| - [Memory Issues](#Memory-Issues) | ||||
|  | ||||
| ## Run | ||||
|  | ||||
| @@ -122,7 +123,7 @@ To upload a fused model, supply the `--upload-repo` and `--hf-path` arguments | ||||
| to `mlx_lm.fuse`. The latter is the repo name of the original model, which is | ||||
| useful for the sake of attribution and model versioning. | ||||
|  | ||||
| For example, to fuse and upload a model derived from Mistral-7B-v0.1, run:  | ||||
| For example, to fuse and upload a model derived from Mistral-7B-v0.1, run: | ||||
|  | ||||
| ```shell | ||||
| mlx_lm.fuse \ | ||||
| @@ -144,38 +145,54 @@ can specify the file name with `--gguf-path`. | ||||
|  | ||||
| ## Data | ||||
|  | ||||
| The LoRA command expects you to provide a dataset with `--data`.  The MLX | ||||
| The LoRA command expects you to provide a dataset with `--data`. The MLX | ||||
| Examples GitHub repo has an [example of the WikiSQL | ||||
| data](https://github.com/ml-explore/mlx-examples/tree/main/lora/data) in the | ||||
| correct format. | ||||
|  | ||||
| For fine-tuning (`--train`), the data loader expects a `train.jsonl` and a | ||||
| `valid.jsonl` to be in the data directory. For evaluation (`--test`), the data | ||||
| loader expects a `test.jsonl` in the data directory.  | ||||
| loader expects a `test.jsonl` in the data directory. | ||||
|  | ||||
| Currently, `*.jsonl` files support three data formats: `chat`, | ||||
| `completions`, and `text`. Here are three examples of these formats: | ||||
|  | ||||
| `chat`: | ||||
|    | ||||
|  | ||||
| ```jsonl | ||||
| {"messages": [ | ||||
|   {"role": "system", "content": "You are a helpful assistant." }, | ||||
|   {"role": "user", "content": "Hello."}, | ||||
|   {"role": "assistant", "content": "How can I assistant you today."}, | ||||
| ]} | ||||
| { | ||||
|   "messages": [ | ||||
|     { | ||||
|       "role": "system", | ||||
|       "content": "You are a helpful assistant." | ||||
|     }, | ||||
|     { | ||||
|       "role": "user", | ||||
|       "content": "Hello." | ||||
|     }, | ||||
|     { | ||||
|       "role": "assistant", | ||||
|       "content": "How can I assistant you today." | ||||
|     } | ||||
|   ] | ||||
| } | ||||
| ``` | ||||
|  | ||||
| `completions`: | ||||
|    | ||||
|  | ||||
| ```jsonl | ||||
| {"prompt": "What is the capital of France?", "completion": "Paris."} | ||||
| { | ||||
|   "prompt": "What is the capital of France?", | ||||
|   "completion": "Paris." | ||||
| } | ||||
| ``` | ||||
|  | ||||
| `text`: | ||||
|  | ||||
| ```jsonl | ||||
| {"text": "This is an example for the model."} | ||||
| { | ||||
|   "text": "This is an example for the model." | ||||
| } | ||||
| ``` | ||||
|  | ||||
| Note, the format is automatically determined by the dataset. Note also, keys in | ||||
| @@ -207,7 +224,7 @@ of memory. Here are some tips to reduce memory use should you need to do so: | ||||
|  | ||||
| 1. Try quantization (QLoRA). You can use QLoRA by generating a quantized model | ||||
|    with `convert.py` and the `-q` flag. See the [Setup](#setup) section for | ||||
|    more details.  | ||||
|    more details. | ||||
|  | ||||
| 2. Try using a smaller batch size with `--batch-size`. The default is `4` so | ||||
|    setting this to `2` or `1` will reduce memory consumption. This may slow | ||||
| @@ -244,6 +261,5 @@ tokens-per-second, using the MLX Example | ||||
| [`wikisql`](https://github.com/ml-explore/mlx-examples/tree/main/lora/data) | ||||
| data set. | ||||
|  | ||||
|  | ||||
| [^lora]: Refer to the [arXiv paper](https://arxiv.org/abs/2106.09685) for more details on LoRA. | ||||
| [^qlora]: Refer to the paper [QLoRA: Efficient Finetuning of Quantized LLMs](https://arxiv.org/abs/2305.14314) | ||||
|   | ||||
							
								
								
									
										212
									
								
								llms/mlx_lm/models/minicpm.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										212
									
								
								llms/mlx_lm/models/minicpm.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,212 @@ | ||||
| from dataclasses import dataclass | ||||
| from typing import Dict, Optional, Tuple, Union | ||||
|  | ||||
| import mlx.core as mx | ||||
| import mlx.nn as nn | ||||
| import numpy as np | ||||
|  | ||||
| from .base import BaseModelArgs | ||||
|  | ||||
|  | ||||
| @dataclass | ||||
| class ModelArgs(BaseModelArgs): | ||||
|     model_type: str | ||||
|     hidden_size: int | ||||
|     dim_model_base: int | ||||
|     num_hidden_layers: int | ||||
|     intermediate_size: int | ||||
|     num_attention_heads: int | ||||
|     rms_norm_eps: float | ||||
|     vocab_size: int | ||||
|     num_key_value_heads: int | ||||
|     max_position_embeddings: int | ||||
|     scale_depth: float | ||||
|     scale_emb: float | ||||
|     rope_theta: float = 1000000.0 | ||||
|     rope_traditional: bool = False | ||||
|     rope_scaling: Optional[Dict[str, Union[str, float]]] = None | ||||
|     tie_word_embeddings: bool = False | ||||
|  | ||||
|  | ||||
| class MLP(nn.Module): | ||||
|     def __init__(self, args): | ||||
|         super().__init__() | ||||
|         self.gate_proj = nn.Linear(args.hidden_size, args.intermediate_size, bias=False) | ||||
|         self.up_proj = nn.Linear(args.hidden_size, args.intermediate_size, bias=False) | ||||
|         self.down_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=False) | ||||
|  | ||||
|     def __call__(self, x): | ||||
|         return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x)) | ||||
|  | ||||
|  | ||||
| class Attention(nn.Module): | ||||
|     def __init__(self, args: ModelArgs): | ||||
|         super().__init__() | ||||
|         self.args = args | ||||
|  | ||||
|         self.hidden_size = args.hidden_size | ||||
|         self.num_heads = n_heads = args.num_attention_heads | ||||
|         self.rope_theta = args.rope_theta | ||||
|         self.max_position_embeddings = args.max_position_embeddings | ||||
|  | ||||
|         self.head_dim = head_dim = args.hidden_size // n_heads | ||||
|         self.scale = head_dim**-0.5 | ||||
|  | ||||
|         self.num_key_value_heads = args.num_key_value_heads | ||||
|         self.num_key_value_groups = self.num_heads // self.num_key_value_heads | ||||
|  | ||||
|         self.q_proj = nn.Linear( | ||||
|             self.hidden_size, self.num_heads * self.head_dim, bias=False | ||||
|         ) | ||||
|         self.k_proj = nn.Linear( | ||||
|             self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False | ||||
|         ) | ||||
|         self.v_proj = nn.Linear( | ||||
|             self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False | ||||
|         ) | ||||
|         self.o_proj = nn.Linear( | ||||
|             self.num_heads * self.head_dim, self.hidden_size, bias=False | ||||
|         ) | ||||
|  | ||||
|         rope_scale = ( | ||||
|             1 / args.rope_scaling["factor"] | ||||
|             if args.rope_scaling is not None and args.rope_scaling["type"] == "linear" | ||||
|             else 1 | ||||
|         ) | ||||
|  | ||||
|         self.rope = nn.RoPE( | ||||
|             dims=self.head_dim, | ||||
|             traditional=args.rope_traditional, | ||||
|             base=self.rope_theta, | ||||
|             scale=rope_scale, | ||||
|         ) | ||||
|  | ||||
|     def __call__( | ||||
|         self, | ||||
|         x: mx.array, | ||||
|         mask: Optional[mx.array] = None, | ||||
|         cache: Optional[Tuple[mx.array, mx.array]] = None, | ||||
|     ): | ||||
|         B, L, _ = x.shape | ||||
|  | ||||
|         queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x) | ||||
|  | ||||
|         queries = queries.reshape(B, L, self.num_heads, -1).transpose(0, 2, 1, 3) | ||||
|         keys = keys.reshape(B, L, self.num_key_value_heads, -1).transpose(0, 2, 1, 3) | ||||
|         values = values.reshape(B, L, self.num_key_value_heads, -1).transpose( | ||||
|             0, 2, 1, 3 | ||||
|         ) | ||||
|  | ||||
|         if cache is not None: | ||||
|             key_cache, value_cache = cache | ||||
|             queries = self.rope(queries, offset=key_cache.shape[2]) | ||||
|             keys = self.rope(keys, offset=key_cache.shape[2]) | ||||
|             keys = mx.concatenate([key_cache, keys], axis=2) | ||||
|             values = mx.concatenate([value_cache, values], axis=2) | ||||
|         else: | ||||
|             queries = self.rope(queries) | ||||
|             keys = self.rope(keys) | ||||
|  | ||||
|         attn_output = mx.fast.scaled_dot_product_attention( | ||||
|             queries, keys, values, scale=self.scale, mask=mask | ||||
|         ) | ||||
|  | ||||
|         attn_output = attn_output.transpose(0, 2, 1, 3).reshape(B, L, -1) | ||||
|  | ||||
|         return self.o_proj(attn_output), (keys, values) | ||||
|  | ||||
|  | ||||
| class DecoderLayer(nn.Module): | ||||
|     def __init__(self, args: ModelArgs): | ||||
|         super().__init__() | ||||
|         self.args = args | ||||
|         self.hidden_size = args.hidden_size | ||||
|         self.num_hidden_layers = args.num_hidden_layers | ||||
|  | ||||
|         self.self_attn = Attention(args) | ||||
|         self.mlp = MLP(args) | ||||
|         self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) | ||||
|         self.post_attention_layernorm = nn.RMSNorm( | ||||
|             args.hidden_size, eps=args.rms_norm_eps | ||||
|         ) | ||||
|  | ||||
|         self.scale_depth = args.scale_depth | ||||
|         self.num_hidden_layers = args.num_hidden_layers | ||||
|  | ||||
|     def __call__( | ||||
|         self, | ||||
|         x: mx.array, | ||||
|         mask: Optional[mx.array] = None, | ||||
|         cache: Optional[Tuple[mx.array, mx.array]] = None, | ||||
|     ) -> mx.array: | ||||
|         r, cache = self.self_attn(self.input_layernorm(x), mask, cache) | ||||
|         h = x + r * (self.scale_depth / np.sqrt(self.num_hidden_layers)) | ||||
|         r = self.mlp(self.post_attention_layernorm(h)) | ||||
|         out = h + r * (self.scale_depth / np.sqrt(self.num_hidden_layers)) | ||||
|         return out, cache | ||||
|  | ||||
|  | ||||
| class MiniCPMModel(nn.Module): | ||||
|     def __init__(self, args: ModelArgs): | ||||
|         super().__init__() | ||||
|         self.args = args | ||||
|         self.vocab_size = args.vocab_size | ||||
|         assert self.vocab_size > 0 | ||||
|  | ||||
|         self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size) | ||||
|         self.layers = [DecoderLayer(args) for _ in range(args.num_hidden_layers)] | ||||
|         self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) | ||||
|  | ||||
|     def __call__( | ||||
|         self, | ||||
|         inputs: mx.array, | ||||
|         cache=None, | ||||
|     ): | ||||
|         h = self.embed_tokens(inputs) * self.args.scale_emb | ||||
|  | ||||
|         mask = None | ||||
|         if h.shape[1] > 1: | ||||
|             mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1]) | ||||
|             mask = mask.astype(h.dtype) | ||||
|  | ||||
|         if cache is None: | ||||
|             cache = [None] * len(self.layers) | ||||
|  | ||||
|         for e, layer in enumerate(self.layers): | ||||
|             h, cache[e] = layer(h, mask, cache[e]) | ||||
|  | ||||
|         return self.norm(h), cache | ||||
|  | ||||
|  | ||||
| class Model(nn.Module): | ||||
|     def __init__(self, args: ModelArgs): | ||||
|         super().__init__() | ||||
|         self.args = args | ||||
|         self.model_type = args.model_type | ||||
|         self.model = MiniCPMModel(args) | ||||
|  | ||||
|         if not self.args.tie_word_embeddings: | ||||
|             self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) | ||||
|  | ||||
|     def __call__( | ||||
|         self, | ||||
|         inputs: mx.array, | ||||
|         cache=None, | ||||
|     ): | ||||
|         out, cache = self.model(inputs, cache) | ||||
|  | ||||
|         if not self.args.tie_word_embeddings: | ||||
|             out = self.lm_head(out / (self.args.hidden_size / self.args.dim_model_base)) | ||||
|         else: | ||||
|             out = out @ self.model.embed_tokens.weight.T | ||||
|  | ||||
|         return out, cache | ||||
|  | ||||
|     def sanitize(self, weights): | ||||
|         if "lm_head.weight" not in weights: | ||||
|             weights["lm_head.weight"] = weights["model.embed_tokens.weight"] | ||||
|         return weights | ||||
|  | ||||
|     @property | ||||
|     def layers(self): | ||||
|         return self.model.layers | ||||
| @@ -77,6 +77,7 @@ def linear_to_lora_layers( | ||||
|         "gemma", | ||||
|         "starcoder2", | ||||
|         "cohere", | ||||
|         "minicpm", | ||||
|     ]: | ||||
|         keys = set(["self_attn.q_proj", "self_attn.v_proj"]) | ||||
|         if model.model_type == "mixtral": | ||||
|   | ||||
| @@ -1,3 +1,3 @@ | ||||
| # Copyright © 2023-2024 Apple Inc. | ||||
|  | ||||
| __version__ = "0.10.0" | ||||
| __version__ = "0.12.0" | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Gökdeniz Gülmez
					Gökdeniz Gülmez