mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 09:21:18 +08:00
MiniCPM implementation (#685)
* Added support for the MiniCPM architecture * Added support for the MiniCPM architecture * Updated utils.py and LORA.md * Updated utils.py and LORA.md * Update implementation details for MiniCPM architecture * Cleaning up * fixed the missing lm.head layer problem * Refactor Model class to dynamically handle tied and untied word embeddings * Quick update * added a dynamic rope scaling base calucaltion * Added support for the MiniCPM architecture * Added support for the MiniCPM architecture * Updated utils.py and LORA.md * Updated utils.py and LORA.md * Update implementation details for MiniCPM architecture * Cleaning up * fixed the missing lm.head layer problem * Refactor Model class to dynamically handle tied and untied word embeddings * added a dynamic rope scaling base calucaltion * quick fix and clean up * clean up again * removed the MiniCPMNorm class as its not used * forgot something, sorry * format * version bump --------- Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
parent
685012c2ad
commit
2c1c9e9024
@ -11,16 +11,17 @@ LoRA (QLoRA).[^qlora] LoRA fine-tuning works with the following model families:
|
||||
- Qwen2
|
||||
- Gemma
|
||||
- OLMo
|
||||
- MiniCPM
|
||||
|
||||
## Contents
|
||||
|
||||
* [Run](#Run)
|
||||
* [Fine-tune](#Fine-tune)
|
||||
* [Evaluate](#Evaluate)
|
||||
* [Generate](#Generate)
|
||||
* [Fuse](#Fuse)
|
||||
* [Data](#Data)
|
||||
* [Memory Issues](#Memory-Issues)
|
||||
- [Run](#Run)
|
||||
- [Fine-tune](#Fine-tune)
|
||||
- [Evaluate](#Evaluate)
|
||||
- [Generate](#Generate)
|
||||
- [Fuse](#Fuse)
|
||||
- [Data](#Data)
|
||||
- [Memory Issues](#Memory-Issues)
|
||||
|
||||
## Run
|
||||
|
||||
@ -159,23 +160,39 @@ Currently, `*.jsonl` files support three data formats: `chat`,
|
||||
`chat`:
|
||||
|
||||
```jsonl
|
||||
{"messages": [
|
||||
{"role": "system", "content": "You are a helpful assistant." },
|
||||
{"role": "user", "content": "Hello."},
|
||||
{"role": "assistant", "content": "How can I assistant you today."},
|
||||
]}
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a helpful assistant."
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Hello."
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "How can I assistant you today."
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
`completions`:
|
||||
|
||||
```jsonl
|
||||
{"prompt": "What is the capital of France?", "completion": "Paris."}
|
||||
{
|
||||
"prompt": "What is the capital of France?",
|
||||
"completion": "Paris."
|
||||
}
|
||||
```
|
||||
|
||||
`text`:
|
||||
|
||||
```jsonl
|
||||
{"text": "This is an example for the model."}
|
||||
{
|
||||
"text": "This is an example for the model."
|
||||
}
|
||||
```
|
||||
|
||||
Note, the format is automatically determined by the dataset. Note also, keys in
|
||||
@ -244,6 +261,5 @@ tokens-per-second, using the MLX Example
|
||||
[`wikisql`](https://github.com/ml-explore/mlx-examples/tree/main/lora/data)
|
||||
data set.
|
||||
|
||||
|
||||
[^lora]: Refer to the [arXiv paper](https://arxiv.org/abs/2106.09685) for more details on LoRA.
|
||||
[^qlora]: Refer to the paper [QLoRA: Efficient Finetuning of Quantized LLMs](https://arxiv.org/abs/2305.14314)
|
||||
|
212
llms/mlx_lm/models/minicpm.py
Normal file
212
llms/mlx_lm/models/minicpm.py
Normal file
@ -0,0 +1,212 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, Optional, Tuple, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
|
||||
from .base import BaseModelArgs
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArgs(BaseModelArgs):
|
||||
model_type: str
|
||||
hidden_size: int
|
||||
dim_model_base: int
|
||||
num_hidden_layers: int
|
||||
intermediate_size: int
|
||||
num_attention_heads: int
|
||||
rms_norm_eps: float
|
||||
vocab_size: int
|
||||
num_key_value_heads: int
|
||||
max_position_embeddings: int
|
||||
scale_depth: float
|
||||
scale_emb: float
|
||||
rope_theta: float = 1000000.0
|
||||
rope_traditional: bool = False
|
||||
rope_scaling: Optional[Dict[str, Union[str, float]]] = None
|
||||
tie_word_embeddings: bool = False
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, args):
|
||||
super().__init__()
|
||||
self.gate_proj = nn.Linear(args.hidden_size, args.intermediate_size, bias=False)
|
||||
self.up_proj = nn.Linear(args.hidden_size, args.intermediate_size, bias=False)
|
||||
self.down_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=False)
|
||||
|
||||
def __call__(self, x):
|
||||
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
|
||||
self.hidden_size = args.hidden_size
|
||||
self.num_heads = n_heads = args.num_attention_heads
|
||||
self.rope_theta = args.rope_theta
|
||||
self.max_position_embeddings = args.max_position_embeddings
|
||||
|
||||
self.head_dim = head_dim = args.hidden_size // n_heads
|
||||
self.scale = head_dim**-0.5
|
||||
|
||||
self.num_key_value_heads = args.num_key_value_heads
|
||||
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
||||
|
||||
self.q_proj = nn.Linear(
|
||||
self.hidden_size, self.num_heads * self.head_dim, bias=False
|
||||
)
|
||||
self.k_proj = nn.Linear(
|
||||
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
|
||||
)
|
||||
self.v_proj = nn.Linear(
|
||||
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
|
||||
)
|
||||
self.o_proj = nn.Linear(
|
||||
self.num_heads * self.head_dim, self.hidden_size, bias=False
|
||||
)
|
||||
|
||||
rope_scale = (
|
||||
1 / args.rope_scaling["factor"]
|
||||
if args.rope_scaling is not None and args.rope_scaling["type"] == "linear"
|
||||
else 1
|
||||
)
|
||||
|
||||
self.rope = nn.RoPE(
|
||||
dims=self.head_dim,
|
||||
traditional=args.rope_traditional,
|
||||
base=self.rope_theta,
|
||||
scale=rope_scale,
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
):
|
||||
B, L, _ = x.shape
|
||||
|
||||
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
||||
|
||||
queries = queries.reshape(B, L, self.num_heads, -1).transpose(0, 2, 1, 3)
|
||||
keys = keys.reshape(B, L, self.num_key_value_heads, -1).transpose(0, 2, 1, 3)
|
||||
values = values.reshape(B, L, self.num_key_value_heads, -1).transpose(
|
||||
0, 2, 1, 3
|
||||
)
|
||||
|
||||
if cache is not None:
|
||||
key_cache, value_cache = cache
|
||||
queries = self.rope(queries, offset=key_cache.shape[2])
|
||||
keys = self.rope(keys, offset=key_cache.shape[2])
|
||||
keys = mx.concatenate([key_cache, keys], axis=2)
|
||||
values = mx.concatenate([value_cache, values], axis=2)
|
||||
else:
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
attn_output = mx.fast.scaled_dot_product_attention(
|
||||
queries, keys, values, scale=self.scale, mask=mask
|
||||
)
|
||||
|
||||
attn_output = attn_output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
|
||||
return self.o_proj(attn_output), (keys, values)
|
||||
|
||||
|
||||
class DecoderLayer(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.hidden_size = args.hidden_size
|
||||
self.num_hidden_layers = args.num_hidden_layers
|
||||
|
||||
self.self_attn = Attention(args)
|
||||
self.mlp = MLP(args)
|
||||
self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||
self.post_attention_layernorm = nn.RMSNorm(
|
||||
args.hidden_size, eps=args.rms_norm_eps
|
||||
)
|
||||
|
||||
self.scale_depth = args.scale_depth
|
||||
self.num_hidden_layers = args.num_hidden_layers
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
) -> mx.array:
|
||||
r, cache = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||
h = x + r * (self.scale_depth / np.sqrt(self.num_hidden_layers))
|
||||
r = self.mlp(self.post_attention_layernorm(h))
|
||||
out = h + r * (self.scale_depth / np.sqrt(self.num_hidden_layers))
|
||||
return out, cache
|
||||
|
||||
|
||||
class MiniCPMModel(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.vocab_size = args.vocab_size
|
||||
assert self.vocab_size > 0
|
||||
|
||||
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
|
||||
self.layers = [DecoderLayer(args) for _ in range(args.num_hidden_layers)]
|
||||
self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache=None,
|
||||
):
|
||||
h = self.embed_tokens(inputs) * self.args.scale_emb
|
||||
|
||||
mask = None
|
||||
if h.shape[1] > 1:
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
|
||||
mask = mask.astype(h.dtype)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
|
||||
for e, layer in enumerate(self.layers):
|
||||
h, cache[e] = layer(h, mask, cache[e])
|
||||
|
||||
return self.norm(h), cache
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.model_type = args.model_type
|
||||
self.model = MiniCPMModel(args)
|
||||
|
||||
if not self.args.tie_word_embeddings:
|
||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache=None,
|
||||
):
|
||||
out, cache = self.model(inputs, cache)
|
||||
|
||||
if not self.args.tie_word_embeddings:
|
||||
out = self.lm_head(out / (self.args.hidden_size / self.args.dim_model_base))
|
||||
else:
|
||||
out = out @ self.model.embed_tokens.weight.T
|
||||
|
||||
return out, cache
|
||||
|
||||
def sanitize(self, weights):
|
||||
if "lm_head.weight" not in weights:
|
||||
weights["lm_head.weight"] = weights["model.embed_tokens.weight"]
|
||||
return weights
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.layers
|
@ -77,6 +77,7 @@ def linear_to_lora_layers(
|
||||
"gemma",
|
||||
"starcoder2",
|
||||
"cohere",
|
||||
"minicpm",
|
||||
]:
|
||||
keys = set(["self_attn.q_proj", "self_attn.v_proj"])
|
||||
if model.model_type == "mixtral":
|
||||
|
@ -1,3 +1,3 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
__version__ = "0.10.0"
|
||||
__version__ = "0.12.0"
|
||||
|
Loading…
Reference in New Issue
Block a user