mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-09-01 12:49:50 +08:00
initial encodec
This commit is contained in:
201
encodec/convert.py
Normal file
201
encodec/convert.py
Normal file
@@ -0,0 +1,201 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import json
|
||||
from pathlib import Path
|
||||
from textwrap import dedent
|
||||
from types import SimpleNamespace
|
||||
from typing import Any, Dict, Union
|
||||
|
||||
import fire
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from huggingface_hub import snapshot_download
|
||||
from mlx.utils import tree_flatten
|
||||
|
||||
import encodec
|
||||
|
||||
|
||||
def fetch_from_hub(hf_repo: str) -> Path:
|
||||
model_path = Path(
|
||||
snapshot_download(
|
||||
repo_id=hf_repo,
|
||||
allow_patterns=["*.json", "*.safetensors"],
|
||||
)
|
||||
)
|
||||
return model_path
|
||||
|
||||
|
||||
def upload_to_hub(path: str, upload_repo: str, hf_path: str):
|
||||
"""
|
||||
Uploads the model to Hugging Face hub.
|
||||
|
||||
Args:
|
||||
path (str): Local path to the model.
|
||||
upload_repo (str): Name of the HF repo to upload to.
|
||||
hf_path (str): Path to the original Hugging Face model.
|
||||
"""
|
||||
import os
|
||||
|
||||
from huggingface_hub import HfApi, ModelCard, logging
|
||||
|
||||
content = dedent(
|
||||
f"""
|
||||
---
|
||||
language: en
|
||||
license: other
|
||||
library: mlx
|
||||
tags:
|
||||
- mlx
|
||||
---
|
||||
|
||||
The Model [{upload_repo}](https://huggingface.co/{upload_repo}) was
|
||||
converted to MLX format from
|
||||
[{hf_path}](https://huggingface.co/{hf_path}).
|
||||
|
||||
This model is intended to be used with the [Encodec MLX
|
||||
Example](TODO).
|
||||
"""
|
||||
)
|
||||
|
||||
card = ModelCard(content)
|
||||
card.save(os.path.join(path, "README.md"))
|
||||
|
||||
logging.set_verbosity_info()
|
||||
|
||||
api = HfApi()
|
||||
api.create_repo(repo_id=upload_repo, exist_ok=True)
|
||||
api.upload_folder(
|
||||
folder_path=path,
|
||||
repo_id=upload_repo,
|
||||
repo_type="model",
|
||||
multi_commits=True,
|
||||
multi_commits_verbose=True,
|
||||
)
|
||||
print(f"Upload successful, go to https://huggingface.co/{upload_repo} for details.")
|
||||
|
||||
|
||||
def save_weights(save_path: Union[str, Path], weights: Dict[str, Any]) -> None:
|
||||
if isinstance(save_path, str):
|
||||
save_path = Path(save_path)
|
||||
save_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
total_size = sum(v.nbytes for v in weights.values())
|
||||
index_data = {"metadata": {"total_size": total_size}, "weight_map": {}}
|
||||
mx.save_safetensors(
|
||||
str(save_path / "model.safetensors"), weights, metadata={"format": "mlx"}
|
||||
)
|
||||
|
||||
for weight_name in weights.keys():
|
||||
index_data["weight_map"][weight_name] = "model.safetensors"
|
||||
|
||||
index_data["weight_map"] = {
|
||||
k: index_data["weight_map"][k] for k in sorted(index_data["weight_map"])
|
||||
}
|
||||
|
||||
with open(save_path / "model.safetensors.index.json", "w") as f:
|
||||
json.dump(index_data, f, indent=4)
|
||||
|
||||
|
||||
def save_config(
|
||||
config: dict,
|
||||
config_path: Union[str, Path],
|
||||
) -> None:
|
||||
"""Save the model configuration to the ``config_path``.
|
||||
|
||||
The final configuration will be sorted before saving for better readability.
|
||||
|
||||
Args:
|
||||
config (dict): The model configuration.
|
||||
config_path (Union[str, Path]): Model configuration file path.
|
||||
"""
|
||||
# Clean unused keys
|
||||
config.pop("_name_or_path", None)
|
||||
|
||||
# sort the config for better readability
|
||||
config = dict(sorted(config.items()))
|
||||
|
||||
# write the updated config to the config_path (if provided)
|
||||
with open(config_path, "w") as fid:
|
||||
json.dump(config, fid, indent=4)
|
||||
|
||||
|
||||
def convert(
|
||||
upload: bool = False,
|
||||
model: str = "24khz",
|
||||
dtype: str = None,
|
||||
):
|
||||
"""
|
||||
Convert CogVideoX models to MLX
|
||||
|
||||
Args:
|
||||
model (str): One of "24khz", "32khz", or "48khz".
|
||||
upload (bool): Upload to Hugging Face.
|
||||
dtype (str): One of "float32", "float16", or "bfloat16".
|
||||
"""
|
||||
hf_repo = f"facebook/encodec_{model}"
|
||||
mlx_repo = f"mlx-community/encodec-{model}-mlx"
|
||||
path = fetch_from_hub(hf_repo)
|
||||
save_path = Path("mlx_models")
|
||||
|
||||
weights = mx.load(str(Path(path) / "model.safetensors"))
|
||||
|
||||
with open(path / "config.json", "r") as fid:
|
||||
config = SimpleNamespace(**json.load(fid))
|
||||
|
||||
model = encodec.EncodecModel(config)
|
||||
|
||||
new_weights = {}
|
||||
for k, v in weights.items():
|
||||
basename, pname = k.rsplit(".", 1)
|
||||
if pname == "weight_v":
|
||||
g = weights[basename + ".weight_g"]
|
||||
v = g * (v / mx.linalg.norm(v, axis=(1, 2), keepdims=True))
|
||||
k = basename + ".weight"
|
||||
elif pname in ["weight_g", "embed_avg", "cluster_size", "inited"]:
|
||||
continue
|
||||
elif "lstm" in basename:
|
||||
w_or_b, ih_or_hh, ln = pname.split("_")
|
||||
if w_or_b == "weight":
|
||||
new_pname = "Wx" if ih_or_hh == "ih" else "Wh"
|
||||
v = v.T
|
||||
elif w_or_b == "bias" and ih_or_hh == "ih":
|
||||
continue
|
||||
else:
|
||||
v = v + weights[k.replace("_hh_", "_ih_")]
|
||||
new_pname = "bias"
|
||||
k = basename + "." + ln[1:] + "." + new_pname
|
||||
if "conv.weight" in k:
|
||||
# Possibly a transposed conv which has a different order
|
||||
if "decoder" in k:
|
||||
ln = int(k.split(".")[2])
|
||||
if "conv" in model.decoder.layers[ln] and isinstance(
|
||||
model.decoder.layers[ln].conv, nn.ConvTranspose1d
|
||||
):
|
||||
v = mx.moveaxis(v, 0, 2)
|
||||
else:
|
||||
v = mx.moveaxis(v, 1, 2)
|
||||
else:
|
||||
v = mx.moveaxis(v, 1, 2)
|
||||
|
||||
new_weights[k] = v
|
||||
weights = new_weights
|
||||
|
||||
model.load_weights(list(weights.items()))
|
||||
|
||||
if dtype is not None:
|
||||
t = getattr(mx, dtype)
|
||||
weights = {k: v.astype(t) for k, v in weights.items()}
|
||||
|
||||
if isinstance(save_path, str):
|
||||
save_path = Path(save_path)
|
||||
|
||||
save_weights(save_path, weights)
|
||||
|
||||
save_config(vars(config), config_path=save_path / "config.json")
|
||||
|
||||
if upload:
|
||||
upload_to_hub(save_path, mlx_repo, hf_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(convert)
|
624
encodec/encodec.py
Normal file
624
encodec/encodec.py
Normal file
@@ -0,0 +1,624 @@
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
|
||||
|
||||
class EncodecConv1d(nn.Module):
|
||||
"""Conv1d with asymmetric or causal padding and normalization."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
kernel_size: int,
|
||||
stride: int = 1,
|
||||
dilation: int = 1,
|
||||
):
|
||||
super().__init__()
|
||||
self.causal = config.use_causal_conv
|
||||
self.pad_mode = config.pad_mode
|
||||
self.norm_type = config.norm_type
|
||||
|
||||
self.conv = nn.Conv1d(
|
||||
in_channels, out_channels, kernel_size, stride, dilation=dilation
|
||||
)
|
||||
if self.norm_type == "time_group_norm":
|
||||
self.norm = nn.GroupNorm(1, out_channels)
|
||||
|
||||
self.stride = stride
|
||||
|
||||
# Effective kernel size with dilations.
|
||||
self.kernel_size = (kernel_size - 1) * dilation + 1
|
||||
|
||||
self.padding_total = kernel_size - stride
|
||||
|
||||
def _get_extra_padding_for_conv1d(
|
||||
self,
|
||||
hidden_states: mx.array,
|
||||
) -> mx.array:
|
||||
length = hidden_states.shape[1]
|
||||
n_frames = (length - self.kernel_size + self.padding_total) / self.stride + 1
|
||||
n_frames = int(math.ceil(n_frames)) - 1
|
||||
ideal_length = n_frames * self.stride + self.kernel_size - self.padding_total
|
||||
return ideal_length - length
|
||||
|
||||
def _pad1d(
|
||||
self,
|
||||
hidden_states: mx.array,
|
||||
paddings: Tuple[int, int],
|
||||
mode: str = "zero",
|
||||
value: float = 0.0,
|
||||
):
|
||||
if mode != "reflect":
|
||||
return mx.pad(
|
||||
hidden_states, paddings, mode="constant", constant_values=value
|
||||
)
|
||||
|
||||
length = hidden_states.shape[1]
|
||||
prefix = hidden_states[:, 1 : paddings[0] + 1][:, ::-1]
|
||||
suffix = hidden_states[:, max(length - (paddings[1] + 1), 0) : -1][:, ::-1]
|
||||
return mx.concatenate([prefix, hidden_states, suffix], axis=1)
|
||||
|
||||
def __call__(self, hidden_states):
|
||||
extra_padding = self._get_extra_padding_for_conv1d(hidden_states)
|
||||
|
||||
if self.causal:
|
||||
# Left padding for causal
|
||||
hidden_states = self._pad1d(
|
||||
hidden_states, (self.padding_total, extra_padding), mode=self.pad_mode
|
||||
)
|
||||
else:
|
||||
# Asymmetric padding required for odd strides
|
||||
padding_right = self.padding_total // 2
|
||||
padding_left = self.padding_total - padding_right
|
||||
hidden_states = self._pad1d(
|
||||
hidden_states,
|
||||
(padding_left, padding_right + extra_padding),
|
||||
mode=self.pad_mode,
|
||||
)
|
||||
|
||||
hidden_states = self.conv(hidden_states)
|
||||
|
||||
if self.norm_type == "time_group_norm":
|
||||
hidden_states = self.norm(hidden_states)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class EncodecConvTranspose1d(nn.Module):
|
||||
"""ConvTranspose1d with asymmetric or causal padding and normalization."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
kernel_size: int,
|
||||
stride: int = 1,
|
||||
):
|
||||
super().__init__()
|
||||
self.causal = config.use_causal_conv
|
||||
self.trim_right_ratio = config.trim_right_ratio
|
||||
self.norm_type = config.norm_type
|
||||
self.conv = nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride)
|
||||
if config.norm_type == "time_group_norm":
|
||||
self.norm = nn.GroupNorm(1, out_channels, pytorch_compatible=True)
|
||||
self.padding_total = kernel_size - stride
|
||||
|
||||
def __call__(self, hidden_states):
|
||||
hidden_states = self.conv(hidden_states)
|
||||
|
||||
if self.norm_type == "time_group_norm":
|
||||
hidden_states = self.norm(hidden_states)
|
||||
|
||||
# We will only trim fixed padding. Extra padding from `pad_for_conv1d` would be
|
||||
# removed at the very end, when keeping only the right length for the output,
|
||||
# as removing it here would require also passing the length at the matching layer
|
||||
# in the encoder.
|
||||
if self.causal:
|
||||
# Trim the padding on the right according to the specified ratio
|
||||
# if trim_right_ratio = 1.0, trim everything from right
|
||||
padding_right = math.ceil(self.padding_total * self.trim_right_ratio)
|
||||
else:
|
||||
# Asymmetric padding required for odd strides
|
||||
padding_right = self.padding_total // 2
|
||||
|
||||
padding_left = self.padding_total - padding_right
|
||||
|
||||
# unpad
|
||||
end = hidden_states.shape[1] - padding_right
|
||||
hidden_states = hidden_states[:, padding_left:end, :]
|
||||
return hidden_states
|
||||
|
||||
|
||||
class EncodecLSTM(nn.Module):
|
||||
def __init__(self, config, dimension):
|
||||
super().__init__()
|
||||
self.lstm = [
|
||||
nn.LSTM(dimension, dimension) for _ in range(config.num_lstm_layers)
|
||||
]
|
||||
|
||||
def __call__(self, hidden_states):
|
||||
h = hidden_states
|
||||
for lstm in self.lstm:
|
||||
h = lstm(h)[0]
|
||||
return h + hidden_states
|
||||
|
||||
|
||||
class EncodecResnetBlock(nn.Module):
|
||||
"""
|
||||
Residual block from SEANet model as used by EnCodec.
|
||||
"""
|
||||
|
||||
def __init__(self, config, dim: int, dilations: List[int]):
|
||||
super().__init__()
|
||||
kernel_sizes = (config.residual_kernel_size, 1)
|
||||
if len(kernel_sizes) != len(dilations):
|
||||
raise ValueError("Number of kernel sizes should match number of dilations")
|
||||
|
||||
hidden = dim // config.compress
|
||||
block = []
|
||||
for i, (kernel_size, dilation) in enumerate(zip(kernel_sizes, dilations)):
|
||||
in_chs = dim if i == 0 else hidden
|
||||
out_chs = dim if i == len(kernel_sizes) - 1 else hidden
|
||||
block += [nn.ELU()]
|
||||
block += [
|
||||
EncodecConv1d(config, in_chs, out_chs, kernel_size, dilation=dilation)
|
||||
]
|
||||
self.block = block
|
||||
|
||||
if getattr(config, "use_conv_shortcut", True):
|
||||
self.shortcut = EncodecConv1d(config, dim, dim, kernel_size=1)
|
||||
else:
|
||||
self.shortcut = nn.Identity()
|
||||
|
||||
def __call__(self, hidden_states):
|
||||
residual = hidden_states
|
||||
for layer in self.block:
|
||||
hidden_states = layer(hidden_states)
|
||||
|
||||
return self.shortcut(residual) + hidden_states
|
||||
|
||||
|
||||
class EncodecEncoder(nn.Module):
|
||||
"""SEANet encoder as used by EnCodec."""
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
model = [
|
||||
EncodecConv1d(
|
||||
config, config.audio_channels, config.num_filters, config.kernel_size
|
||||
)
|
||||
]
|
||||
scaling = 1
|
||||
|
||||
for ratio in reversed(config.upsampling_ratios):
|
||||
current_scale = scaling * config.num_filters
|
||||
for j in range(config.num_residual_layers):
|
||||
model += [
|
||||
EncodecResnetBlock(
|
||||
config, current_scale, [config.dilation_growth_rate**j, 1]
|
||||
)
|
||||
]
|
||||
model += [nn.ELU()]
|
||||
model += [
|
||||
EncodecConv1d(
|
||||
config,
|
||||
current_scale,
|
||||
current_scale * 2,
|
||||
kernel_size=ratio * 2,
|
||||
stride=ratio,
|
||||
)
|
||||
]
|
||||
scaling *= 2
|
||||
|
||||
model += [EncodecLSTM(config, scaling * config.num_filters)]
|
||||
model += [nn.ELU()]
|
||||
model += [
|
||||
EncodecConv1d(
|
||||
config,
|
||||
scaling * config.num_filters,
|
||||
config.hidden_size,
|
||||
config.last_kernel_size,
|
||||
)
|
||||
]
|
||||
|
||||
self.layers = model
|
||||
|
||||
def __call__(self, hidden_states):
|
||||
for layer in self.layers:
|
||||
hidden_states = layer(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class EncodecDecoder(nn.Module):
|
||||
"""SEANet decoder as used by EnCodec."""
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
scaling = int(2 ** len(config.upsampling_ratios))
|
||||
model = [
|
||||
EncodecConv1d(
|
||||
config,
|
||||
config.hidden_size,
|
||||
scaling * config.num_filters,
|
||||
config.kernel_size,
|
||||
)
|
||||
]
|
||||
|
||||
model += [EncodecLSTM(config, scaling * config.num_filters)]
|
||||
|
||||
for ratio in config.upsampling_ratios:
|
||||
current_scale = scaling * config.num_filters
|
||||
model += [nn.ELU()]
|
||||
model += [
|
||||
EncodecConvTranspose1d(
|
||||
config,
|
||||
current_scale,
|
||||
current_scale // 2,
|
||||
kernel_size=ratio * 2,
|
||||
stride=ratio,
|
||||
)
|
||||
]
|
||||
for j in range(config.num_residual_layers):
|
||||
model += [
|
||||
EncodecResnetBlock(
|
||||
config, current_scale // 2, (config.dilation_growth_rate**j, 1)
|
||||
)
|
||||
]
|
||||
scaling //= 2
|
||||
|
||||
model += [nn.ELU()]
|
||||
model += [
|
||||
EncodecConv1d(
|
||||
config,
|
||||
config.num_filters,
|
||||
config.audio_channels,
|
||||
config.last_kernel_size,
|
||||
)
|
||||
]
|
||||
self.layers = model
|
||||
|
||||
def __call__(self, hidden_states):
|
||||
for layer in self.layers:
|
||||
hidden_states = layer(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class EncodecEuclideanCodebook(nn.Module):
|
||||
"""Codebook with Euclidean distance."""
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.embed = mx.zeros((config.codebook_size, config.codebook_dim))
|
||||
|
||||
def quantize(self, hidden_states):
|
||||
embed = self.embed.T
|
||||
scaled_states = hidden_states.square().sum(axis=1, keepdims=True)
|
||||
dist = -(
|
||||
scaled_states
|
||||
- 2 * hidden_states @ embed
|
||||
+ embed.square().sum(axis=0, keepdims=True)
|
||||
)
|
||||
embed_ind = dist.argmax(axis=-1)
|
||||
return embed_ind
|
||||
|
||||
def encode(self, hidden_states):
|
||||
shape = hidden_states.shape
|
||||
# pre-process
|
||||
hidden_states = hidden_states.reshape((-1, shape[-1]))
|
||||
# quantize
|
||||
embed_ind = self.quantize(hidden_states)
|
||||
# post-process
|
||||
embed_ind = embed_ind.reshape(*shape[:-1])
|
||||
return embed_ind
|
||||
|
||||
def decode(self, embed_ind):
|
||||
return self.embed[embed_ind]
|
||||
|
||||
|
||||
class EncodecVectorQuantization(nn.Module):
|
||||
"""
|
||||
Vector quantization implementation. Currently supports only euclidean distance.
|
||||
"""
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.codebook = EncodecEuclideanCodebook(config)
|
||||
|
||||
def encode(self, hidden_states):
|
||||
return self.codebook.encode(hidden_states)
|
||||
|
||||
def decode(self, embed_ind):
|
||||
return self.codebook.decode(embed_ind)
|
||||
|
||||
|
||||
class EncodecResidualVectorQuantizer(nn.Module):
|
||||
"""Residual Vector Quantizer."""
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.codebook_size = config.codebook_size
|
||||
|
||||
hop_length = np.prod(config.upsampling_ratios)
|
||||
self.frame_rate = math.ceil(config.sampling_rate / hop_length)
|
||||
self.num_quantizers = int(
|
||||
1000 * config.target_bandwidths[-1] // (self.frame_rate * 10)
|
||||
)
|
||||
self.layers = [
|
||||
EncodecVectorQuantization(config) for _ in range(self.num_quantizers)
|
||||
]
|
||||
|
||||
def get_num_quantizers_for_bandwidth(
|
||||
self, bandwidth: Optional[float] = None
|
||||
) -> int:
|
||||
"""Return num_quantizers based on specified target bandwidth."""
|
||||
bw_per_q = math.log2(self.codebook_size) * self.frame_rate
|
||||
num_quantizers = self.num_quantizers
|
||||
if bandwidth is not None and bandwidth > 0.0:
|
||||
num_quantizers = int(max(1, math.floor(bandwidth * 1000 / bw_per_q)))
|
||||
return num_quantizers
|
||||
|
||||
def encode(
|
||||
self, embeddings: mx.array, bandwidth: Optional[float] = None
|
||||
) -> mx.array:
|
||||
"""
|
||||
Encode a given input tensor with the specified frame rate at the given
|
||||
bandwidth. The RVQ encode method sets the appropriate number of
|
||||
quantizers to use and returns indices for each quantizer.
|
||||
"""
|
||||
num_quantizers = self.get_num_quantizers_for_bandwidth(bandwidth)
|
||||
residual = embeddings
|
||||
all_indices = []
|
||||
for layer in self.layers[:num_quantizers]:
|
||||
indices = layer.encode(residual)
|
||||
quantized = layer.decode(indices)
|
||||
residual = residual - quantized
|
||||
all_indices.append(indices)
|
||||
out_indices = mx.stack(all_indices, axis=1)
|
||||
return out_indices
|
||||
|
||||
def decode(self, codes: mx.array) -> mx.array:
|
||||
"""Decode the given codes to the quantized representation."""
|
||||
quantized_out = None
|
||||
for i, indices in enumerate(codes.split(codes.shape[1], axis=1)):
|
||||
layer = self.layers[i]
|
||||
quantized = layer.decode(indices.squeeze(1))
|
||||
if quantized_out is None:
|
||||
quantized_out = quantized
|
||||
else:
|
||||
quantized_out = quantized + quantized_out
|
||||
return quantized_out
|
||||
|
||||
|
||||
class EncodecModel(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.encoder = EncodecEncoder(config)
|
||||
self.decoder = EncodecDecoder(config)
|
||||
self.quantizer = EncodecResidualVectorQuantizer(config)
|
||||
self.bits_per_codebook = int(math.log2(self.config.codebook_size))
|
||||
|
||||
def _encode_frame(
|
||||
self, input_values: mx.array, bandwidth: float, padding_mask: int
|
||||
) -> Tuple[mx.array, Optional[mx.array]]:
|
||||
"""
|
||||
Encodes the given input using the underlying VQVAE.
|
||||
|
||||
If `config.normalize` is set to `True` the input is first normalized. The
|
||||
padding mask is required to compute the correct scale.
|
||||
"""
|
||||
length = input_values.shape[1]
|
||||
duration = length / self.config.sampling_rate
|
||||
|
||||
if (
|
||||
self.config.chunk_length_s is not None
|
||||
and duration > 1e-5 + self.config.chunk_length_s
|
||||
):
|
||||
raise RuntimeError(
|
||||
f"Duration of frame ({duration}) is longer than chunk {self.config.chunk_length_s}"
|
||||
)
|
||||
|
||||
scale = None
|
||||
if self.config.normalize:
|
||||
# if the padding is non zero
|
||||
input_values = input_values * padding_mask
|
||||
# TODO looks like an RMSNorm
|
||||
mono = mx.sum(input_values, axis=1, keepdims=True) / input_values.shape[1]
|
||||
scale = mono.square().mean(axis=-1, keepdims=True).sqrt() + 1e-8
|
||||
input_values = input_values / scale
|
||||
|
||||
embeddings = self.encoder(input_values)
|
||||
codes = self.quantizer.encode(embeddings, bandwidth)
|
||||
return codes, scale
|
||||
|
||||
def encode(
|
||||
self,
|
||||
input_values: mx.array,
|
||||
padding_mask: mx.array = None,
|
||||
bandwidth: Optional[float] = None,
|
||||
) -> Tuple[mx.array, Optional[mx.array]]:
|
||||
"""
|
||||
Encodes the input audio waveform into discrete codes.
|
||||
|
||||
Args:
|
||||
input_values (mx.array): The input audio waveform with shape
|
||||
``(batch_size, channels, sequence_length)``.
|
||||
padding_mask (mx.array): Padding mask used to pad the `input_values`.
|
||||
bandwidth (float, optional): The target bandwidth. Must be one of
|
||||
``config.target_bandwidths``. If ``None``, uses the smallest
|
||||
possible bandwidth. bandwidth is represented as a thousandth of
|
||||
what it is, e.g. 6kbps bandwidth is represented as bandwidth == 6.0
|
||||
|
||||
Returns:
|
||||
A list of frames containing the discrete encoded codes for the
|
||||
input audio waveform, along with rescaling factors for each chunk
|
||||
when ``normalize==True``. Each frame is a tuple ``(codebook,
|
||||
scale)``, with ``codebook`` of shape ``[batch_size, num_codebooks,
|
||||
frames]``.
|
||||
"""
|
||||
|
||||
if bandwidth is None:
|
||||
bandwidth = self.config.target_bandwidths[0]
|
||||
if bandwidth not in self.config.target_bandwidths:
|
||||
raise ValueError(
|
||||
f"This model doesn't support the bandwidth {bandwidth}. "
|
||||
f"Select one of {self.config.target_bandwidths}."
|
||||
)
|
||||
|
||||
_, input_length, channels = input_values.shape
|
||||
|
||||
if channels < 1 or channels > 2:
|
||||
raise ValueError(
|
||||
f"Number of audio channels must be 1 or 2, but got {channels}"
|
||||
)
|
||||
|
||||
chunk_length = self.chunk_length
|
||||
if chunk_length is None:
|
||||
chunk_length = input_length
|
||||
stride = input_length
|
||||
else:
|
||||
stride = self.chunk_stride
|
||||
|
||||
if padding_mask is None:
|
||||
padding_mask = mx.ones(input_values.shape(), dtype=mx.bool_)
|
||||
|
||||
encoded_frames = []
|
||||
scales = []
|
||||
|
||||
step = chunk_length - stride
|
||||
if (input_length % stride) - step != 0:
|
||||
raise ValueError(
|
||||
"The input length is not properly padded for batched chunked "
|
||||
"decoding. Make sure to pad the input correctly."
|
||||
)
|
||||
|
||||
for offset in range(0, input_length - step, stride):
|
||||
mask = padding_mask[:, offset : offset + chunk_length].astype(mx.bool_)
|
||||
frame = input_values[:, offset : offset + chunk_length]
|
||||
encoded_frame, scale = self._encode_frame(frame, bandwidth, mask)
|
||||
encoded_frames.append(encoded_frame)
|
||||
scales.append(scale)
|
||||
|
||||
encoded_frames = mx.stack(encoded_frames, axis=1)
|
||||
|
||||
return (encoded_frames, scales)
|
||||
|
||||
@staticmethod
|
||||
def _linear_overlap_add(frames: List[mx.array], stride: int):
|
||||
# Generic overlap add, with linear fade-in/fade-out, supporting complex scenario
|
||||
# e.g., more than 2 frames per position.
|
||||
# The core idea is to use a weight function that is a triangle,
|
||||
# with a maximum value at the middle of the chunk.
|
||||
# We use this weighting when summing the frames, and divide by the sum of weights
|
||||
# for each positions at the end. Thus:
|
||||
# - if a frame is the only one to cover a position, the weighting is a no-op.
|
||||
# - if 2 frames cover a position:
|
||||
# ... ...
|
||||
# / \/ \
|
||||
# / /\ \
|
||||
# S T , i.e. S offset of second frame starts, T end of first frame.
|
||||
# Then the weight function for each one is: (t - S), (T - t), with `t` a given offset.
|
||||
# After the final normalization, the weight of the second frame at position `t` is
|
||||
# (t - S) / (t - S + (T - t)) = (t - S) / (T - S), which is exactly what we want.
|
||||
#
|
||||
# - if more than 2 frames overlap at a given point, we hope that by induction
|
||||
# something sensible happens.
|
||||
if len(frames) == 0:
|
||||
raise ValueError("`frames` cannot be an empty list.")
|
||||
|
||||
device = frames[0].device
|
||||
dtype = frames[0].dtype
|
||||
shape = frames[0].shape[:-1]
|
||||
total_size = stride * (len(frames) - 1) + frames[-1].shape[-1]
|
||||
|
||||
frame_length = frames[0].shape[-1]
|
||||
time_vec = torch.linspace(0, 1, frame_length + 2, device=device, dtype=dtype)[
|
||||
1:-1
|
||||
]
|
||||
weight = 0.5 - (time_vec - 0.5).abs()
|
||||
|
||||
sum_weight = torch.zeros(total_size, device=device, dtype=dtype)
|
||||
out = torch.zeros(*shape, total_size, device=device, dtype=dtype)
|
||||
offset: int = 0
|
||||
|
||||
for frame in frames:
|
||||
frame_length = frame.shape[-1]
|
||||
out[..., offset : offset + frame_length] += weight[:frame_length] * frame
|
||||
sum_weight[offset : offset + frame_length] += weight[:frame_length]
|
||||
offset += stride
|
||||
|
||||
if sum_weight.min() == 0:
|
||||
raise ValueError(
|
||||
f"`sum_weight` minimum element must be bigger than zero: {sum_weight}`"
|
||||
)
|
||||
|
||||
return out / sum_weight
|
||||
|
||||
def _decode_frame(
|
||||
self, codes: mx.array, scale: Optional[mx.array] = None
|
||||
) -> mx.array:
|
||||
embeddings = self.quantizer.decode(codes)
|
||||
outputs = self.decoder(embeddings)
|
||||
if scale is not None:
|
||||
outputs = outputs * scale.view(-1, 1, 1)
|
||||
return outputs
|
||||
|
||||
@property
|
||||
def chunk_length(self):
|
||||
if self.config.chunk_length_s is None:
|
||||
return None
|
||||
else:
|
||||
return int(self.config.chunk_length_s * self.sampling_rate)
|
||||
|
||||
@property
|
||||
def chunk_stride(self):
|
||||
if self.config.chunk_length_s is None or self.config.overlap is None:
|
||||
return None
|
||||
else:
|
||||
return max(1, int((1.0 - self.config.overlap) * self.chunk_length))
|
||||
|
||||
def decode(
|
||||
self,
|
||||
audio_codes: mx.array,
|
||||
audio_scales: mx.array,
|
||||
padding_mask: Optional[mx.array] = None,
|
||||
) -> Tuple[mx.array, mx.array]:
|
||||
"""
|
||||
Decodes the given frames into an output audio waveform.
|
||||
|
||||
Note that the output might be a bit bigger than the input. In that case, any extra steps at the end can be
|
||||
trimmed.
|
||||
|
||||
Args:
|
||||
audio_codes (mx.array): Discret code embeddings of shape ``(batch_size, nb_chunks, chunk_length)``.
|
||||
audio_scales (mx.array): Scaling factor for each ``audio_codes`` input.
|
||||
padding_mask (mx.array): Padding mask used to pad the ``audio_codes``.
|
||||
"""
|
||||
|
||||
chunk_length = self.chunk_length
|
||||
if chunk_length is None:
|
||||
if audio_codes.shape[1] != 1:
|
||||
raise ValueError(f"Expected one frame, got {len(audio_codes)}")
|
||||
audio_values = self._decode_frame(audio_codes[:, 0], audio_scales[0])
|
||||
else:
|
||||
decoded_frames = []
|
||||
|
||||
for frame, scale in zip(audio_codes, audio_scales):
|
||||
frames = self._decode_frame(frame, scale)
|
||||
decoded_frames.append(frames)
|
||||
|
||||
audio_values = self._linear_overlap_add(
|
||||
decoded_frames, self.chunk_stride or 1
|
||||
)
|
||||
|
||||
# truncate based on padding mask
|
||||
if padding_mask is not None and padding_mask.shape[1] < audio_values.shape[1]:
|
||||
audio_values = audio_values[:, : padding_mask.shape[1]]
|
||||
return audio_values
|
45
encodec/hf_test.py
Normal file
45
encodec/hf_test.py
Normal file
@@ -0,0 +1,45 @@
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoProcessor, EncodecModel
|
||||
from utils import load, load_audio
|
||||
|
||||
# processor = AutoProcessor.from_pretrained("facebook/encodec_24khz")
|
||||
# audio_sample = load_audio("ls_test.flac", processor.sampling_rate)
|
||||
|
||||
|
||||
def compare_models():
|
||||
pt_model = EncodecModel.from_pretrained("facebook/encodec_24khz")
|
||||
mx_model = load("mlx_models")
|
||||
|
||||
np.random.seed(0)
|
||||
audio = np.random.uniform(size=(1, 159960)).astype(np.float32)
|
||||
mask = np.ones(audio.shape, dtype=np.int32)
|
||||
pt_encoded = pt_model.encode(torch.tensor(audio)[None], torch.tensor(mask)[None])
|
||||
mx_encoded = mx_model.encode(mx.array(audio)[..., None], mx.array(mask)[..., None])
|
||||
pt_codes = pt_encoded.audio_codes.numpy()
|
||||
mx_codes = mx_encoded[0]
|
||||
assert np.array_equal(pt_codes, mx_codes), "Encoding codes mismatch"
|
||||
|
||||
for mx_scale, pt_scale in zip(mx_encoded[1], pt_encoded.audio_scales):
|
||||
if mx_scale is not None:
|
||||
pt_scales = pt_scale.numpy()
|
||||
assert np.allclose(pt_scales, mx_scales, atol=1e-3, rtol=1e-4)
|
||||
|
||||
pt_audio = pt_model.decode(
|
||||
pt_encoded.audio_codes, pt_encoded.audio_scales, torch.tensor(mask)[None]
|
||||
)
|
||||
pt_audio = pt_audio[0].squeeze().detach().numpy()
|
||||
mx_audio = mx_model.decode(*mx_encoded, mx.array(mask)[..., None])
|
||||
mx_audio = mx_audio.squeeze()
|
||||
assert np.allclose(
|
||||
pt_audio, mx_audio, atol=1e-5, rtol=1e-5
|
||||
), "Decoding audio mismatch"
|
||||
|
||||
|
||||
# pre-process the inputs
|
||||
# inputs = processor(raw_audio=np.array(audio_sample), sampling_rate=processor.sampling_rate, return_tensors="pt")
|
||||
# print(inputs["input_values"].shape)
|
||||
# print(inputs["padding_mask"])
|
||||
if __name__ == "__main__":
|
||||
compare_models()
|
65
encodec/utils.py
Normal file
65
encodec/utils.py
Normal file
@@ -0,0 +1,65 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import json
|
||||
from pathlib import Path
|
||||
from subprocess import CalledProcessError, run
|
||||
from types import SimpleNamespace
|
||||
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
import encodec
|
||||
|
||||
|
||||
def load_audio(file: str, sr: int):
|
||||
"""
|
||||
Open an audio file and read as mono waveform, resampling as necessary
|
||||
|
||||
Args:
|
||||
file (str): The audio file to open.
|
||||
sr (int): The sample rate to resample the audio at, if needed.
|
||||
|
||||
Returns:
|
||||
An mx.array containing the audio waveform in float32.
|
||||
"""
|
||||
|
||||
# This launches a subprocess to decode audio while down-mixing
|
||||
# and resampling as necessary. Requires the ffmpeg CLI in PATH.
|
||||
# fmt: off
|
||||
cmd = [
|
||||
"ffmpeg",
|
||||
"-nostdin",
|
||||
"-threads", "0",
|
||||
"-i", file,
|
||||
"-f", "s16le",
|
||||
"-ac", "1",
|
||||
"-acodec", "pcm_s16le",
|
||||
"-ar", str(sr),
|
||||
"-"
|
||||
]
|
||||
# fmt: on
|
||||
try:
|
||||
out = run(cmd, capture_output=True, check=True).stdout
|
||||
except CalledProcessError as e:
|
||||
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
|
||||
|
||||
return mx.array(np.frombuffer(out, np.int16)).flatten().astype(mx.float32) / 32768.0
|
||||
|
||||
|
||||
def load(path_or_repo):
|
||||
path = Path(path_or_repo)
|
||||
if not path.exists():
|
||||
path = Path(
|
||||
snapshot_download(
|
||||
repo_id=path_or_repo,
|
||||
allow_patterns=["*.json", "*.safetensors", "*.model"],
|
||||
)
|
||||
)
|
||||
|
||||
with open(path / "config.json", "r") as f:
|
||||
config = SimpleNamespace(**json.load(f))
|
||||
|
||||
model = encodec.EncodecModel(config)
|
||||
model.load_weights(str(path / "model.safetensors"))
|
||||
return model
|
Reference in New Issue
Block a user