mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-09-11 06:04:36 +08:00
use the same model structure and module names as HF
This commit is contained in:
@@ -17,70 +17,18 @@ from models import Model, ModelArgs
|
|||||||
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
||||||
|
|
||||||
|
|
||||||
def convert(hf_path: str, dtype: str):
|
def fetch_from_hub(hf_path: str, dtype: str):
|
||||||
# Download model, config and tokenizer from HF
|
|
||||||
model = transformers.AutoModelForCausalLM.from_pretrained(
|
model = transformers.AutoModelForCausalLM.from_pretrained(
|
||||||
hf_path,
|
hf_path,
|
||||||
trust_remote_code=True,
|
|
||||||
torch_dtype=getattr(torch, dtype),
|
torch_dtype=getattr(torch, dtype),
|
||||||
).state_dict()
|
).state_dict()
|
||||||
config = transformers.AutoConfig.from_pretrained(hf_path)
|
config = transformers.AutoConfig.from_pretrained(hf_path)
|
||||||
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
||||||
hf_path,
|
hf_path,
|
||||||
trust_remote_code=True,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
# things to change
|
|
||||||
# 1. there's no "model." in the weight names
|
|
||||||
model = {k.replace("model.", ""): v for k, v in model.items()}
|
|
||||||
|
|
||||||
# 2. mlp is called feed_forward
|
|
||||||
model = {k.replace("mlp", "feed_forward"): v for k, v in model.items()}
|
|
||||||
|
|
||||||
# 3. up_proj, down_proj, gate_proj
|
|
||||||
model = {k.replace("down_proj", "w2"): v for k, v in model.items()}
|
|
||||||
model = {k.replace("up_proj", "w3"): v for k, v in model.items()}
|
|
||||||
model = {k.replace("gate_proj", "w1"): v for k, v in model.items()}
|
|
||||||
|
|
||||||
# 4. layernorms
|
|
||||||
model = {
|
|
||||||
k.replace("input_layernorm", "attention_norm"): v for k, v in model.items()
|
|
||||||
}
|
|
||||||
model = {
|
|
||||||
k.replace("post_attention_layernorm", "ffn_norm"): v for k, v in model.items()
|
|
||||||
}
|
|
||||||
|
|
||||||
# 5. lm head
|
|
||||||
model = {k.replace("lm_head", "output"): v for k, v in model.items()}
|
|
||||||
|
|
||||||
# 6. token emb
|
|
||||||
model = {k.replace("embed_tokens", "tok_embeddings"): v for k, v in model.items()}
|
|
||||||
|
|
||||||
# 7. attention
|
|
||||||
model = {k.replace("self_attn", "attention"): v for k, v in model.items()}
|
|
||||||
model = {k.replace("q_proj", "wq"): v for k, v in model.items()}
|
|
||||||
model = {k.replace("k_proj", "wk"): v for k, v in model.items()}
|
|
||||||
model = {k.replace("v_proj", "wv"): v for k, v in model.items()}
|
|
||||||
model = {k.replace("o_proj", "wo"): v for k, v in model.items()}
|
|
||||||
|
|
||||||
params = {}
|
|
||||||
params["model_type"] = "llama"
|
|
||||||
params["dim"] = config.hidden_size
|
|
||||||
params["hidden_dim"] = config.intermediate_size
|
|
||||||
params["head_dim"] = config.hidden_size // config.num_attention_heads
|
|
||||||
params["n_heads"] = config.num_attention_heads
|
|
||||||
if hasattr(config, "num_key_value_heads"):
|
|
||||||
params["n_kv_heads"] = config.num_key_value_heads
|
|
||||||
params["n_layers"] = config.num_hidden_layers
|
|
||||||
params["vocab_size"] = config.vocab_size
|
|
||||||
params["norm_eps"] = config.rms_norm_eps
|
|
||||||
params["rope_traditional"] = False
|
|
||||||
params["rope_theta"] = getattr(config, "rope_theta", 10000)
|
|
||||||
|
|
||||||
for k, v in model.items():
|
for k, v in model.items():
|
||||||
model[k] = mx.array(v.numpy())
|
model[k] = mx.array(v.numpy())
|
||||||
|
return model, config.to_dict(), tokenizer
|
||||||
return model, params, tokenizer
|
|
||||||
|
|
||||||
|
|
||||||
def quantize(weights, config, args):
|
def quantize(weights, config, args):
|
||||||
@@ -89,8 +37,7 @@ def quantize(weights, config, args):
|
|||||||
# Load the model:
|
# Load the model:
|
||||||
model = Model(ModelArgs(**config))
|
model = Model(ModelArgs(**config))
|
||||||
weights = tree_map(mx.array, weights)
|
weights = tree_map(mx.array, weights)
|
||||||
# TODO replace with model.load_weights
|
model.load_weights(list(weights.items()))
|
||||||
model.update(tree_unflatten(list(weights.items())))
|
|
||||||
|
|
||||||
# Quantize the model:
|
# Quantize the model:
|
||||||
nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
|
nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
|
||||||
@@ -163,7 +110,7 @@ if __name__ == "__main__":
|
|||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
print("[INFO] Loading")
|
print("[INFO] Loading")
|
||||||
weights, config, tokenizer = convert(args.hf_path, args.dtype)
|
weights, config, tokenizer = fetch_from_hub(args.hf_path, args.dtype)
|
||||||
if args.quantize:
|
if args.quantize:
|
||||||
print("[INFO] Quantizing")
|
print("[INFO] Quantizing")
|
||||||
weights, config = quantize(weights, config, args)
|
weights, config = quantize(weights, config, args)
|
||||||
|
@@ -2,6 +2,7 @@
|
|||||||
|
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
import glob
|
import glob
|
||||||
|
import inspect
|
||||||
import json
|
import json
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Optional, Tuple
|
from typing import Optional, Tuple
|
||||||
@@ -15,17 +16,27 @@ from huggingface_hub import snapshot_download
|
|||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class ModelArgs:
|
class ModelArgs:
|
||||||
dim: int
|
hidden_size: int
|
||||||
n_layers: int
|
num_hidden_layers: int
|
||||||
head_dim: int
|
intermediate_size: int
|
||||||
hidden_dim: int
|
num_attention_heads: int
|
||||||
n_heads: int
|
rms_norm_eps: float
|
||||||
n_kv_heads: int
|
|
||||||
norm_eps: float
|
|
||||||
vocab_size: int
|
vocab_size: int
|
||||||
|
num_key_value_heads: int = None
|
||||||
rope_theta: float = 10000
|
rope_theta: float = 10000
|
||||||
rope_traditional: bool = True
|
rope_traditional: bool = False
|
||||||
|
model_type: str = None
|
||||||
|
|
||||||
|
def __post_init__(self):
|
||||||
|
if self.num_key_value_heads is None:
|
||||||
|
self.num_key_value_heads = self.num_attention_heads
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def from_dict(cls, params):
|
||||||
|
return cls(**{
|
||||||
|
k: v for k, v in params.items()
|
||||||
|
if k in inspect.signature(cls).parameters
|
||||||
|
})
|
||||||
|
|
||||||
class RMSNorm(nn.Module):
|
class RMSNorm(nn.Module):
|
||||||
def __init__(self, dims: int, eps: float = 1e-5):
|
def __init__(self, dims: int, eps: float = 1e-5):
|
||||||
@@ -44,20 +55,22 @@ class RMSNorm(nn.Module):
|
|||||||
class Attention(nn.Module):
|
class Attention(nn.Module):
|
||||||
def __init__(self, args: ModelArgs):
|
def __init__(self, args: ModelArgs):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.args = args
|
|
||||||
|
|
||||||
self.n_heads: int = args.n_heads
|
|
||||||
self.n_kv_heads: int = args.n_kv_heads
|
|
||||||
|
|
||||||
self.repeats = self.n_heads // self.n_kv_heads
|
dim = args.hidden_size
|
||||||
|
self.n_heads = n_heads = args.num_attention_heads
|
||||||
|
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
||||||
|
|
||||||
self.scale = self.args.head_dim**-0.5
|
self.repeats = n_heads // n_kv_heads
|
||||||
|
|
||||||
self.wq = nn.Linear(args.dim, args.n_heads * args.head_dim, bias=False)
|
head_dim = args.hidden_size // n_heads
|
||||||
self.wk = nn.Linear(args.dim, args.n_kv_heads * args.head_dim, bias=False)
|
self.scale = head_dim**-0.5
|
||||||
self.wv = nn.Linear(args.dim, args.n_kv_heads * args.head_dim, bias=False)
|
|
||||||
self.wo = nn.Linear(args.n_heads * args.head_dim, args.dim, bias=False)
|
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
|
||||||
self.rope = nn.RoPE(args.head_dim, traditional=args.rope_traditional, base=args.rope_theta)
|
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
||||||
|
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
||||||
|
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
|
||||||
|
self.rope = nn.RoPE(head_dim, traditional=args.rope_traditional, base=args.rope_theta)
|
||||||
|
|
||||||
def __call__(
|
def __call__(
|
||||||
self,
|
self,
|
||||||
@@ -67,7 +80,7 @@ class Attention(nn.Module):
|
|||||||
) -> mx.array:
|
) -> mx.array:
|
||||||
B, L, D = x.shape
|
B, L, D = x.shape
|
||||||
|
|
||||||
queries, keys, values = self.wq(x), self.wk(x), self.wv(x)
|
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
||||||
|
|
||||||
# Prepare the queries, keys and values for the attention computation
|
# Prepare the queries, keys and values for the attention computation
|
||||||
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||||||
@@ -78,7 +91,8 @@ class Attention(nn.Module):
|
|||||||
a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2)
|
a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2)
|
||||||
return a.reshape([B, self.n_heads, L, -1])
|
return a.reshape([B, self.n_heads, L, -1])
|
||||||
|
|
||||||
keys, values = map(repeat, (keys, values))
|
if self.repeats > 1:
|
||||||
|
keys, values = map(repeat, (keys, values))
|
||||||
|
|
||||||
if cache is not None:
|
if cache is not None:
|
||||||
key_cache, value_cache = cache
|
key_cache, value_cache = cache
|
||||||
@@ -95,30 +109,29 @@ class Attention(nn.Module):
|
|||||||
scores += mask
|
scores += mask
|
||||||
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
|
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
|
||||||
output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||||
return self.wo(output), (keys, values)
|
return self.o_proj(output), (keys, values)
|
||||||
|
|
||||||
|
|
||||||
class FeedForward(nn.Module):
|
class MLP(nn.Module):
|
||||||
def __init__(self, args: ModelArgs):
|
def __init__(self, dim, hidden_dim):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
|
||||||
self.w1 = nn.Linear(args.dim, args.hidden_dim, bias=False)
|
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
|
||||||
self.w2 = nn.Linear(args.hidden_dim, args.dim, bias=False)
|
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
|
||||||
self.w3 = nn.Linear(args.dim, args.hidden_dim, bias=False)
|
|
||||||
|
|
||||||
def __call__(self, x) -> mx.array:
|
def __call__(self, x) -> mx.array:
|
||||||
return self.w2(nn.silu(self.w1(x)) * self.w3(x))
|
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
|
||||||
|
|
||||||
|
|
||||||
class TransformerBlock(nn.Module):
|
class TransformerBlock(nn.Module):
|
||||||
def __init__(self, args: ModelArgs):
|
def __init__(self, args: ModelArgs):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.n_heads = args.n_heads
|
self.num_attention_heads = args.num_attention_heads
|
||||||
self.dim = args.dim
|
self.hidden_size = args.hidden_size
|
||||||
self.attention = Attention(args)
|
self.self_attn = Attention(args)
|
||||||
self.feed_forward = FeedForward(args=args)
|
self.mlp = MLP(args.hidden_size, args.intermediate_size)
|
||||||
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
self.input_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||||
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
self.post_attention_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||||
self.args = args
|
self.args = args
|
||||||
|
|
||||||
def __call__(
|
def __call__(
|
||||||
@@ -127,31 +140,30 @@ class TransformerBlock(nn.Module):
|
|||||||
mask: Optional[mx.array] = None,
|
mask: Optional[mx.array] = None,
|
||||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||||
) -> mx.array:
|
) -> mx.array:
|
||||||
r, cache = self.attention(self.attention_norm(x), mask, cache)
|
r, cache = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||||
h = x + r
|
h = x + r
|
||||||
r = self.feed_forward(self.ffn_norm(h))
|
r = self.mlp(self.post_attention_layernorm(h))
|
||||||
out = h + r
|
out = h + r
|
||||||
return out, cache
|
return out, cache
|
||||||
|
|
||||||
|
|
||||||
class Model(nn.Module):
|
class LlamaModel(nn.Module):
|
||||||
def __init__(self, args: ModelArgs):
|
def __init__(self, args: ModelArgs):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.args = args
|
self.args = args
|
||||||
self.vocab_size = args.vocab_size
|
self.vocab_size = args.vocab_size
|
||||||
self.n_layers = args.n_layers
|
self.num_hidden_layers = args.num_hidden_layers
|
||||||
assert self.vocab_size > 0
|
assert self.vocab_size > 0
|
||||||
self.tok_embeddings = nn.Embedding(args.vocab_size, args.dim)
|
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
|
||||||
self.layers = [TransformerBlock(args=args) for _ in range(args.n_layers)]
|
self.layers = [TransformerBlock(args=args) for _ in range(args.num_hidden_layers)]
|
||||||
self.norm = RMSNorm(args.dim, eps=args.norm_eps)
|
self.norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||||
self.output = nn.Linear(args.dim, args.vocab_size, bias=False)
|
|
||||||
|
|
||||||
def __call__(
|
def __call__(
|
||||||
self,
|
self,
|
||||||
inputs: mx.array,
|
inputs: mx.array,
|
||||||
cache=None,
|
cache=None,
|
||||||
):
|
):
|
||||||
h = self.tok_embeddings(inputs)
|
h = self.embed_tokens(inputs)
|
||||||
|
|
||||||
mask = None
|
mask = None
|
||||||
if h.shape[1] > 1:
|
if h.shape[1] > 1:
|
||||||
@@ -164,7 +176,22 @@ class Model(nn.Module):
|
|||||||
for e, layer in enumerate(self.layers):
|
for e, layer in enumerate(self.layers):
|
||||||
h, cache[e] = layer(h, mask, cache[e])
|
h, cache[e] = layer(h, mask, cache[e])
|
||||||
|
|
||||||
return self.output(self.norm(h)), cache
|
return self.norm(h), cache
|
||||||
|
|
||||||
|
|
||||||
|
class Model(nn.Module):
|
||||||
|
def __init__(self, args: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
self.model = LlamaModel(args)
|
||||||
|
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
inputs: mx.array,
|
||||||
|
cache=None,
|
||||||
|
):
|
||||||
|
out, cache = self.model(inputs, cache)
|
||||||
|
return self.lm_head(out), cache
|
||||||
|
|
||||||
|
|
||||||
def load(path_or_hf_repo: str):
|
def load(path_or_hf_repo: str):
|
||||||
@@ -178,9 +205,8 @@ def load(path_or_hf_repo: str):
|
|||||||
|
|
||||||
with open(model_path / "config.json", "r") as f:
|
with open(model_path / "config.json", "r") as f:
|
||||||
config = json.loads(f.read())
|
config = json.loads(f.read())
|
||||||
config.pop("model_type", None)
|
quantization = config.get("quantization", None)
|
||||||
quantization = config.pop("quantization", None)
|
model_args = ModelArgs.from_dict(config)
|
||||||
model_args = ModelArgs(**config)
|
|
||||||
|
|
||||||
weight_files = glob.glob(str(model_path / "weights.*.safetensors"))
|
weight_files = glob.glob(str(model_path / "weights.*.safetensors"))
|
||||||
if len(weight_files) == 0:
|
if len(weight_files) == 0:
|
||||||
@@ -194,14 +220,11 @@ def load(path_or_hf_repo: str):
|
|||||||
if quantization is not None:
|
if quantization is not None:
|
||||||
nn.QuantizedLinear.quantize_module(model, **quantization)
|
nn.QuantizedLinear.quantize_module(model, **quantization)
|
||||||
|
|
||||||
# TODO replace with
|
model.load_weights(list(weights.items()))
|
||||||
# model.load_weights(weights)
|
|
||||||
model.update(tree_unflatten(list(weights.items())))
|
|
||||||
|
|
||||||
mx.eval(model.parameters())
|
mx.eval(model.parameters())
|
||||||
tokenizer = AutoTokenizer.from_pretrained(
|
tokenizer = AutoTokenizer.from_pretrained(
|
||||||
model_path,
|
model_path,
|
||||||
trust_remote_code=True,
|
|
||||||
)
|
)
|
||||||
return model, tokenizer
|
return model, tokenizer
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user