mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-27 03:05:20 +08:00
still gibberish
This commit is contained in:
parent
f4cbe27b0f
commit
2ed51946ab
@ -154,10 +154,6 @@ class Mamba2Block(nn.Module):
|
||||
|
||||
# Split conv output and reshape
|
||||
x = x_conv[..., :self.d_inner]
|
||||
# B = mx.reshape(x_conv[..., self.d_inner:self.d_inner + self.d_state], (batch_size, seq_len, self.n_heads, -1)) # [1, 1, 128, 1]
|
||||
# C = mx.reshape(x_conv[..., -self.d_state:], (batch_size, seq_len, self.n_heads, -1)) # [1, 1, 128, 1]
|
||||
|
||||
# Reshape tensors for correct broadcasting
|
||||
x = mx.reshape(x, (batch_size, seq_len, self.n_heads, self.d_head))
|
||||
B = mx.reshape(x_conv[..., self.d_inner:self.d_inner + self.d_state], (batch_size, seq_len, self.n_heads, self.d_state // self.n_heads))
|
||||
C = mx.reshape(x_conv[..., -self.d_state:], (batch_size, seq_len, self.n_heads, self.d_state // self.n_heads))
|
||||
@ -173,15 +169,9 @@ class Mamba2Block(nn.Module):
|
||||
prev_state = mx.zeros((batch_size, self.n_heads, self.d_head, self.d_state))
|
||||
|
||||
# Compute dA - simplified to match PyTorch
|
||||
# A = -mx.exp(self.A_log) * self.args.initializer_range
|
||||
# dt = mx.reshape(dt, (batch_size, seq_len, self.n_heads))
|
||||
# dA = mx.exp(dt * mx.expand_dims(A, axis=(0, 1)))
|
||||
|
||||
# SSM parameters calculation
|
||||
A = -mx.exp(self.A_log) * self.args.initializer_range
|
||||
dt = mx.reshape(dt, (batch_size, seq_len, self.n_heads))
|
||||
A = mx.reshape(A, (1, 1, self.n_heads)) # [1, 1, n_heads]
|
||||
dA = mx.exp(dt * A)
|
||||
dA = mx.exp(dt * mx.expand_dims(A, axis=(0, 1)))
|
||||
|
||||
# Process sequence
|
||||
next_state = prev_state
|
||||
@ -198,14 +188,10 @@ class Mamba2Block(nn.Module):
|
||||
dBx = mx.einsum('bh,bhd,bhp->bhpd', dAt, Bt, xt)
|
||||
|
||||
# Update state - matches PyTorch implementation
|
||||
# next_state = (
|
||||
# next_state * mx.expand_dims(dAt, axis=(-1, -2)) +
|
||||
# dBx
|
||||
# )
|
||||
|
||||
# Update state
|
||||
dAt = mx.reshape(dAt, (batch_size, self.n_heads, 1, 1))
|
||||
next_state = next_state * dAt + dBx
|
||||
next_state = (
|
||||
next_state * mx.expand_dims(dAt, axis=(-1, -2)) +
|
||||
dBx
|
||||
)
|
||||
|
||||
# Compute output
|
||||
yt = mx.einsum('bhpd,bhd->bhp', next_state, Ct)
|
||||
|
Loading…
Reference in New Issue
Block a user