Add support for Gemma3 (#1336)

* add support for gemma3

* fix model loading

* revert rmsnorm

* revert is sliding pattern

* revert

* add tests

* formatting

* Update llms/mlx_lm/models/gemma3_text.py

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update llms/mlx_lm/models/gemma3_text.py

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update llms/mlx_lm/models/gemma3_text.py

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update llms/mlx_lm/models/gemma3_text.py

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update llms/mlx_lm/models/gemma3_text.py

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update llms/mlx_lm/models/gemma3_text.py

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update llms/mlx_lm/models/gemma3_text.py

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* fix sliding window mask

---------

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
Prince Canuma 2025-03-13 16:14:25 +01:00 committed by GitHub
parent 3e5baf583b
commit 2fce02acd8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 258 additions and 0 deletions

View File

@ -0,0 +1,238 @@
# Copyright © 2025 Apple Inc.
from dataclasses import dataclass
from typing import Any, Optional
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs, create_attention_mask
from .cache import KVCache, RotatingKVCache
@dataclass
class ModelArgs(BaseModelArgs):
model_type: str
hidden_size: int = 1152
num_hidden_layers: int = 26
intermediate_size: int = 6912
num_attention_heads: int = 4
head_dim: int = 256
rms_norm_eps: float = 1.0e-6
vocab_size: int = 262144
num_key_value_heads: int = 1
rope_global_base_freq: float = 1_000_000.0
rope_local_base_freq: float = 10_000.0
rope_traditional: bool = False
query_pre_attn_scalar: float = 256
sliding_window: int = 512
sliding_window_pattern: int = 6
class Attention(nn.Module):
def __init__(self, args: ModelArgs, layer_idx: int):
super().__init__()
dim = args.hidden_size
self.n_heads = n_heads = args.num_attention_heads
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
self.repeats = n_heads // n_kv_heads
self.head_dim = head_dim = args.head_dim
self.layer_idx = layer_idx
self.scale = args.query_pre_attn_scalar**-0.5
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
self.q_norm = RMSNorm(dims=head_dim, eps=args.rms_norm_eps)
self.k_norm = RMSNorm(dims=head_dim, eps=args.rms_norm_eps)
self.is_sliding = (layer_idx + 1) % args.sliding_window_pattern != 0
self.rope = nn.RoPE(
head_dim,
traditional=args.rope_traditional,
base=(
args.rope_local_base_freq
if self.is_sliding
else args.rope_global_base_freq
),
)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array:
B, L, _ = x.shape
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
queries = self.q_norm(queries)
keys = self.k_norm(keys)
if cache is not None:
queries = self.rope(queries, offset=cache.offset)
keys = self.rope(keys, offset=cache.offset)
keys, values = cache.update_and_fetch(keys, values)
else:
queries = self.rope(queries)
keys = self.rope(keys)
# Sliding window
if mask is not None and mask.shape[-1] != keys.shape[-2]:
mask = mask[..., -keys.shape[-2] :]
output = mx.fast.scaled_dot_product_attention(
queries, keys, values, scale=self.scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.o_proj(output)
class RMSNorm(nn.Module):
def __init__(self, dims: int, eps: float = 1e-5):
super().__init__()
self.weight = mx.ones((dims,))
self.eps = eps
def __call__(self, x):
return mx.fast.rms_norm(x, 1.0 + self.weight, self.eps)
class MLP(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
def __call__(self, x) -> mx.array:
return self.down_proj(nn.gelu_approx(self.gate_proj(x)) * self.up_proj(x))
class TransformerBlock(nn.Module):
def __init__(self, args: ModelArgs, layer_idx: int):
super().__init__()
self.num_attention_heads = args.num_attention_heads
self.hidden_size = args.hidden_size
self.self_attn = Attention(args, layer_idx)
self.mlp = MLP(args.hidden_size, args.intermediate_size)
self.input_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
self.pre_feedforward_layernorm = RMSNorm(
args.hidden_size, eps=args.rms_norm_eps
)
self.post_feedforward_layernorm = RMSNorm(
args.hidden_size, eps=args.rms_norm_eps
)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array:
r = self.self_attn(self.input_layernorm(x), mask, cache)
h = x + self.post_attention_layernorm(r)
r = self.mlp(self.pre_feedforward_layernorm(h))
out = h + self.post_feedforward_layernorm(r)
return out
class Gemma3Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.vocab_size = args.vocab_size
self.num_hidden_layers = args.num_hidden_layers
assert self.vocab_size > 0
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
self.layers = [
TransformerBlock(args=args, layer_idx=layer_idx)
for layer_idx in range(args.num_hidden_layers)
]
self.norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
def __call__(
self,
inputs: mx.array,
mask: mx.array = None,
cache=None,
):
h = self.embed_tokens(inputs)
h *= mx.array(self.args.hidden_size**0.5, mx.bfloat16).astype(h.dtype)
if cache is None:
cache = [None] * len(self.layers)
if mask is None:
j = self.args.sliding_window_pattern
full_mask = create_attention_mask(h, cache[j - 1 : j])
sliding_window_mask = create_attention_mask(h, cache)
for i, (layer, c) in enumerate(zip(self.layers, cache)):
is_sliding = (
i % self.args.sliding_window_pattern
== self.args.sliding_window_pattern - 1
)
if mask is None and is_sliding:
mask = sliding_window_mask
elif mask is None:
mask = full_mask
h = layer(h, mask, c)
return self.norm(h)
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.model_type = args.model_type
self.model = Gemma3Model(args)
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
def __call__(
self,
inputs: mx.array,
cache=None,
mask: Optional[mx.array] = None,
):
out = self.model(inputs, mask, cache)
out = self.lm_head(out)
return out
def sanitize(self, weights):
if "lm_head.weight" not in weights:
weights["lm_head.weight"] = weights["model.embed_tokens.weight"]
return {
k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
}
@property
def layers(self):
return self.model.layers
def make_cache(self):
caches = []
for i in range(self.args.num_hidden_layers):
if (
i % self.args.sliding_window_pattern
== self.args.sliding_window_pattern - 1
):
caches.append(KVCache())
else:
caches.append(
RotatingKVCache(max_size=self.args.sliding_window, keep=0)
)
return caches

View File

@ -755,6 +755,26 @@ class TestModels(unittest.TestCase):
model, args.model_type, args.vocab_size, args.num_hidden_layers
)
def test_gemma3_text(self):
from mlx_lm.models import gemma3_text
args = gemma3_text.ModelArgs(
model_type="gemma3_text",
hidden_size=128,
num_hidden_layers=12,
intermediate_size=256,
num_attention_heads=4,
head_dim=32,
rms_norm_eps=1e-4,
num_key_value_heads=1,
sliding_window=1024,
sliding_window_pattern=6,
)
model = gemma3_text.Model(args)
self.model_test_runner(
model, args.model_type, args.vocab_size, args.num_hidden_layers
)
def test_gpt_bigcode(self):
from mlx_lm.models import gpt_bigcode