refactor(qwen): moving qwen into mlx-lm (#312)

* refactor(qwen): moving qwen into mlx-lm

* chore: update doc

* chore: fix type hint

* add qwen model support in convert

* chore: fix doc

* chore: only load model in quantize_model

* chore: make the convert script only copy tokenizer files instead of load it and save

* chore: update docstring

* chore: remove unnecessary try catch

* chore: clean up for tokenizer and update  transformers 4.37

* nits in README

---------

Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
Anchen
2024-01-22 15:00:07 -08:00
committed by GitHub
parent de15532da8
commit 30be4c4734
8 changed files with 80 additions and 309 deletions

View File

@@ -10,8 +10,7 @@ from huggingface_hub import snapshot_download
from transformers import AutoTokenizer, PreTrainedTokenizer
# Local imports
from .models import llama, mixtral, phi2
from .models.base import BaseModelArgs
from .models import llama, mixtral, phi2, qwen
# Constants
MODEL_MAPPING = {
@@ -19,6 +18,7 @@ MODEL_MAPPING = {
"mistral": llama, # mistral is compatible with llama
"mixtral": mixtral,
"phi": phi2,
"qwen": qwen,
}
linear_class_predicate = (
@@ -64,7 +64,13 @@ def get_model_path(path_or_hf_repo: str) -> Path:
model_path = Path(
snapshot_download(
repo_id=path_or_hf_repo,
allow_patterns=["*.json", "*.safetensors", "*.py", "tokenizer.model"],
allow_patterns=[
"*.json",
"*.safetensors",
"*.py",
"tokenizer.model",
"*.tiktoken",
],
)
)
return model_path
@@ -196,15 +202,18 @@ def load_model(model_path: Path) -> nn.Module:
return model
def load(path_or_hf_repo: str) -> Tuple[nn.Module, PreTrainedTokenizer]:
def load(
path_or_hf_repo: str, tokenizer_config={}
) -> Tuple[nn.Module, PreTrainedTokenizer]:
"""
Load the model from a given path or a huggingface repository.
Args:
path_or_hf_repo (str): The path or the huggingface repository to load the model from.
model_path (Path): The path or the huggingface repository to load the model from.
tokenizer_config (dict, optional): Configuration parameters specifically for the tokenizer.
Defaults to an empty dictionary.
Returns:
Tuple[nn.Module, PreTrainedTokenizer]: The loaded model and tokenizer.
nn.Module: The loaded model.
Raises:
FileNotFoundError: If config file or safetensors are not found.
@@ -213,5 +222,5 @@ def load(path_or_hf_repo: str) -> Tuple[nn.Module, PreTrainedTokenizer]:
model_path = get_model_path(path_or_hf_repo)
model = load_model(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path, **tokenizer_config)
return model, tokenizer