mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00
parent
6120a5f376
commit
31611b62d7
@ -93,6 +93,12 @@ def setup_arg_parser():
|
||||
action="store_true",
|
||||
help="Use the default chat template",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--chat-template-config",
|
||||
help="Additional config for `apply_chat_template`. Should be a dictionary of"
|
||||
" string keys to values represented as a JSON decodable string.",
|
||||
default=None,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--verbose",
|
||||
type=str2bool,
|
||||
@ -149,7 +155,6 @@ def setup_arg_parser():
|
||||
def main():
|
||||
parser = setup_arg_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
mx.random.seed(args.seed)
|
||||
|
||||
# Load the prompt cache and metadata if a cache file is provided
|
||||
@ -195,6 +200,10 @@ def main():
|
||||
for eos_token in args.extra_eos_token:
|
||||
tokenizer.add_eos_token(eos_token)
|
||||
|
||||
template_kwargs = {}
|
||||
if args.chat_template_config is not None:
|
||||
template_kwargs = json.loads(args.chat_template_config)
|
||||
|
||||
if args.use_default_chat_template:
|
||||
if tokenizer.chat_template is None:
|
||||
tokenizer.chat_template = tokenizer.default_chat_template
|
||||
@ -209,8 +218,12 @@ def main():
|
||||
else:
|
||||
messages = []
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
|
||||
prompt = tokenizer.apply_chat_template(
|
||||
messages, tokenize=False, add_generation_prompt=True
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True,
|
||||
**template_kwargs,
|
||||
)
|
||||
|
||||
# Treat the prompt as a suffix assuming that the prefix is in the
|
||||
|
195
llms/mlx_lm/models/granite.py
Normal file
195
llms/mlx_lm/models/granite.py
Normal file
@ -0,0 +1,195 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, Optional, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
|
||||
from .rope_utils import initialize_rope
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArgs(BaseModelArgs):
|
||||
model_type: str
|
||||
hidden_size: int
|
||||
num_hidden_layers: int
|
||||
intermediate_size: int
|
||||
num_attention_heads: int
|
||||
rms_norm_eps: float
|
||||
vocab_size: int
|
||||
logits_scaling: float
|
||||
attention_multiplier: float
|
||||
embedding_multiplier: float
|
||||
residual_multiplier: float
|
||||
max_position_embeddings: int
|
||||
num_key_value_heads: int
|
||||
attention_bias: bool
|
||||
mlp_bias: bool
|
||||
rope_theta: float
|
||||
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
|
||||
tie_word_embeddings: bool = True
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
|
||||
dim = args.hidden_size
|
||||
self.n_heads = n_heads = args.num_attention_heads
|
||||
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
||||
|
||||
self.head_dim = head_dim = args.hidden_size // n_heads
|
||||
|
||||
self.scale = args.attention_multiplier
|
||||
attention_bias = args.attention_bias
|
||||
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=attention_bias)
|
||||
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
|
||||
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
|
||||
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=attention_bias)
|
||||
|
||||
self.rope = initialize_rope(
|
||||
self.head_dim,
|
||||
args.rope_theta,
|
||||
False,
|
||||
args.rope_scaling,
|
||||
args.max_position_embeddings,
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
||||
|
||||
# Prepare the queries, keys and values for the attention computation
|
||||
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||||
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||
|
||||
if cache is not None:
|
||||
queries = self.rope(queries, offset=cache.offset)
|
||||
keys = self.rope(keys, offset=cache.offset)
|
||||
keys, values = cache.update_and_fetch(keys, values)
|
||||
else:
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
output = scaled_dot_product_attention(
|
||||
queries, keys, values, cache=cache, scale=self.scale, mask=mask
|
||||
)
|
||||
|
||||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.o_proj(output)
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
|
||||
dim = args.hidden_size
|
||||
hidden_dim = args.intermediate_size
|
||||
if hasattr(args, "mlp_bias"):
|
||||
mlp_bias = args.mlp_bias
|
||||
else:
|
||||
mlp_bias = False
|
||||
|
||||
self.gate_proj = nn.Linear(dim, hidden_dim, bias=mlp_bias)
|
||||
self.down_proj = nn.Linear(hidden_dim, dim, bias=mlp_bias)
|
||||
self.up_proj = nn.Linear(dim, hidden_dim, bias=mlp_bias)
|
||||
|
||||
def __call__(self, x) -> mx.array:
|
||||
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
|
||||
|
||||
|
||||
class TransformerBlock(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.num_attention_heads = args.num_attention_heads
|
||||
self.hidden_size = args.hidden_size
|
||||
self.self_attn = Attention(args)
|
||||
self.mlp = MLP(args)
|
||||
self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||
self.post_attention_layernorm = nn.RMSNorm(
|
||||
args.hidden_size, eps=args.rms_norm_eps
|
||||
)
|
||||
self.residual_multiplier = args.residual_multiplier
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Any] = None,
|
||||
) -> mx.array:
|
||||
r = self.self_attn(self.input_layernorm(x), mask, cache)
|
||||
h = x + r * self.residual_multiplier
|
||||
r = self.mlp(self.post_attention_layernorm(h))
|
||||
out = h + r * self.residual_multiplier
|
||||
return out
|
||||
|
||||
|
||||
class GraniteModel(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.vocab_size = args.vocab_size
|
||||
self.num_hidden_layers = args.num_hidden_layers
|
||||
assert self.vocab_size > 0
|
||||
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
|
||||
self.layers = [
|
||||
TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
|
||||
]
|
||||
self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||
self.embedding_multiplier = args.embedding_multiplier
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
mask: mx.array = None,
|
||||
cache=None,
|
||||
):
|
||||
h = self.embed_tokens(inputs) * self.embedding_multiplier
|
||||
|
||||
if mask is None:
|
||||
mask = create_attention_mask(h, cache)
|
||||
|
||||
if cache is None:
|
||||
cache = [None] * len(self.layers)
|
||||
|
||||
for layer, c in zip(self.layers, cache):
|
||||
h = layer(h, mask, cache=c)
|
||||
|
||||
return self.norm(h)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.model_type = args.model_type
|
||||
self.model = GraniteModel(args)
|
||||
if not args.tie_word_embeddings:
|
||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||
self.logits_scaling = args.logits_scaling
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
mask: mx.array = None,
|
||||
cache=None,
|
||||
):
|
||||
out = self.model(inputs, mask, cache)
|
||||
if self.args.tie_word_embeddings:
|
||||
out = self.model.embed_tokens.as_linear(out)
|
||||
else:
|
||||
out = self.lm_head(out)
|
||||
return out / self.logits_scaling
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.model.layers
|
@ -94,6 +94,7 @@ def linear_to_lora_layers(
|
||||
"phimoe",
|
||||
"gemma",
|
||||
"gemma2",
|
||||
"granite",
|
||||
"helium",
|
||||
"starcoder2",
|
||||
"cohere",
|
||||
|
Loading…
Reference in New Issue
Block a user