diff --git a/llms/mlx_lm/generate.py b/llms/mlx_lm/generate.py index e7994750..d8f97e5e 100644 --- a/llms/mlx_lm/generate.py +++ b/llms/mlx_lm/generate.py @@ -93,6 +93,12 @@ def setup_arg_parser(): action="store_true", help="Use the default chat template", ) + parser.add_argument( + "--chat-template-config", + help="Additional config for `apply_chat_template`. Should be a dictionary of" + " string keys to values represented as a JSON decodable string.", + default=None, + ) parser.add_argument( "--verbose", type=str2bool, @@ -149,7 +155,6 @@ def setup_arg_parser(): def main(): parser = setup_arg_parser() args = parser.parse_args() - mx.random.seed(args.seed) # Load the prompt cache and metadata if a cache file is provided @@ -195,6 +200,10 @@ def main(): for eos_token in args.extra_eos_token: tokenizer.add_eos_token(eos_token) + template_kwargs = {} + if args.chat_template_config is not None: + template_kwargs = json.loads(args.chat_template_config) + if args.use_default_chat_template: if tokenizer.chat_template is None: tokenizer.chat_template = tokenizer.default_chat_template @@ -209,8 +218,12 @@ def main(): else: messages = [] messages.append({"role": "user", "content": prompt}) + prompt = tokenizer.apply_chat_template( - messages, tokenize=False, add_generation_prompt=True + messages, + tokenize=False, + add_generation_prompt=True, + **template_kwargs, ) # Treat the prompt as a suffix assuming that the prefix is in the diff --git a/llms/mlx_lm/models/granite.py b/llms/mlx_lm/models/granite.py new file mode 100644 index 00000000..43597d99 --- /dev/null +++ b/llms/mlx_lm/models/granite.py @@ -0,0 +1,195 @@ +# Copyright © 2023-2024 Apple Inc. + +from dataclasses import dataclass +from typing import Any, Dict, Optional, Union + +import mlx.core as mx +import mlx.nn as nn + +from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention +from .rope_utils import initialize_rope + + +@dataclass +class ModelArgs(BaseModelArgs): + model_type: str + hidden_size: int + num_hidden_layers: int + intermediate_size: int + num_attention_heads: int + rms_norm_eps: float + vocab_size: int + logits_scaling: float + attention_multiplier: float + embedding_multiplier: float + residual_multiplier: float + max_position_embeddings: int + num_key_value_heads: int + attention_bias: bool + mlp_bias: bool + rope_theta: float + rope_scaling: Optional[Dict[str, Union[float, str]]] = None + tie_word_embeddings: bool = True + + +class Attention(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + + dim = args.hidden_size + self.n_heads = n_heads = args.num_attention_heads + self.n_kv_heads = n_kv_heads = args.num_key_value_heads + + self.head_dim = head_dim = args.hidden_size // n_heads + + self.scale = args.attention_multiplier + attention_bias = args.attention_bias + self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=attention_bias) + self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias) + self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias) + self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=attention_bias) + + self.rope = initialize_rope( + self.head_dim, + args.rope_theta, + False, + args.rope_scaling, + args.max_position_embeddings, + ) + + def __call__( + self, + x: mx.array, + mask: Optional[mx.array] = None, + cache: Optional[Any] = None, + ) -> mx.array: + B, L, D = x.shape + + queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x) + + # Prepare the queries, keys and values for the attention computation + queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) + keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) + values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) + + if cache is not None: + queries = self.rope(queries, offset=cache.offset) + keys = self.rope(keys, offset=cache.offset) + keys, values = cache.update_and_fetch(keys, values) + else: + queries = self.rope(queries) + keys = self.rope(keys) + + output = scaled_dot_product_attention( + queries, keys, values, cache=cache, scale=self.scale, mask=mask + ) + + output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) + return self.o_proj(output) + + +class MLP(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + + dim = args.hidden_size + hidden_dim = args.intermediate_size + if hasattr(args, "mlp_bias"): + mlp_bias = args.mlp_bias + else: + mlp_bias = False + + self.gate_proj = nn.Linear(dim, hidden_dim, bias=mlp_bias) + self.down_proj = nn.Linear(hidden_dim, dim, bias=mlp_bias) + self.up_proj = nn.Linear(dim, hidden_dim, bias=mlp_bias) + + def __call__(self, x) -> mx.array: + return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x)) + + +class TransformerBlock(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + self.num_attention_heads = args.num_attention_heads + self.hidden_size = args.hidden_size + self.self_attn = Attention(args) + self.mlp = MLP(args) + self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) + self.post_attention_layernorm = nn.RMSNorm( + args.hidden_size, eps=args.rms_norm_eps + ) + self.residual_multiplier = args.residual_multiplier + + def __call__( + self, + x: mx.array, + mask: Optional[mx.array] = None, + cache: Optional[Any] = None, + ) -> mx.array: + r = self.self_attn(self.input_layernorm(x), mask, cache) + h = x + r * self.residual_multiplier + r = self.mlp(self.post_attention_layernorm(h)) + out = h + r * self.residual_multiplier + return out + + +class GraniteModel(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + self.args = args + self.vocab_size = args.vocab_size + self.num_hidden_layers = args.num_hidden_layers + assert self.vocab_size > 0 + self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size) + self.layers = [ + TransformerBlock(args=args) for _ in range(args.num_hidden_layers) + ] + self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) + self.embedding_multiplier = args.embedding_multiplier + + def __call__( + self, + inputs: mx.array, + mask: mx.array = None, + cache=None, + ): + h = self.embed_tokens(inputs) * self.embedding_multiplier + + if mask is None: + mask = create_attention_mask(h, cache) + + if cache is None: + cache = [None] * len(self.layers) + + for layer, c in zip(self.layers, cache): + h = layer(h, mask, cache=c) + + return self.norm(h) + + +class Model(nn.Module): + def __init__(self, args: ModelArgs): + super().__init__() + self.args = args + self.model_type = args.model_type + self.model = GraniteModel(args) + if not args.tie_word_embeddings: + self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) + self.logits_scaling = args.logits_scaling + + def __call__( + self, + inputs: mx.array, + mask: mx.array = None, + cache=None, + ): + out = self.model(inputs, mask, cache) + if self.args.tie_word_embeddings: + out = self.model.embed_tokens.as_linear(out) + else: + out = self.lm_head(out) + return out / self.logits_scaling + + @property + def layers(self): + return self.model.layers diff --git a/llms/mlx_lm/tuner/utils.py b/llms/mlx_lm/tuner/utils.py index c0e52731..d86e01dd 100644 --- a/llms/mlx_lm/tuner/utils.py +++ b/llms/mlx_lm/tuner/utils.py @@ -94,6 +94,7 @@ def linear_to_lora_layers( "phimoe", "gemma", "gemma2", + "granite", "helium", "starcoder2", "cohere",