mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-21 12:06:51 +08:00
add deepseek coder example (#172)
* feat: add example for deepseek coder * chore: remove hardcoded rope_scaling_factor * feat: add quantization support * chore: update readme * chore: clean up the rope scalling factor param in create cos sin theta * feat: add repetition_penalty * style /consistency changes to ease future integration * nits in README * one more typo --------- Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
parent
37fd2464dc
commit
31ddbd7806
45
llms/deepseek-coder/README.md
Normal file
45
llms/deepseek-coder/README.md
Normal file
@ -0,0 +1,45 @@
|
|||||||
|
# Deepseek Coder
|
||||||
|
|
||||||
|
Deepseek Coder is a family of code generating language models based on the
|
||||||
|
Llama architecture.[^1] The models were trained from scratch on a corpus of 2T
|
||||||
|
tokens, with a composition of 87% code and 13% natural language containing both
|
||||||
|
English and Chinese.
|
||||||
|
|
||||||
|
### Setup
|
||||||
|
|
||||||
|
Install the dependencies:
|
||||||
|
|
||||||
|
```
|
||||||
|
pip install -r requirements.txt
|
||||||
|
```
|
||||||
|
|
||||||
|
Next, download and convert the model.
|
||||||
|
|
||||||
|
```sh
|
||||||
|
python convert.py --hf-path <path_to_huggingface_model>
|
||||||
|
```
|
||||||
|
|
||||||
|
To generate a 4-bit quantized model, use `-q`. For a full list of options run:
|
||||||
|
|
||||||
|
```
|
||||||
|
python convert.py --help
|
||||||
|
```
|
||||||
|
|
||||||
|
The converter downloads the model from Hugging Face. The default model is
|
||||||
|
`deepseek-ai/deepseek-coder-6.7b-instruct`. Check out the [Hugging Face
|
||||||
|
page](https://huggingface.co/deepseek-ai) to see a list of available models.
|
||||||
|
|
||||||
|
By default, the conversion script will save the converted `weights.npz`,
|
||||||
|
tokenizer, and `config.json` in the `mlx_model` directory.
|
||||||
|
|
||||||
|
### Run
|
||||||
|
|
||||||
|
Once you've converted the weights, you can interact with the Deepseek coder
|
||||||
|
model:
|
||||||
|
|
||||||
|
```
|
||||||
|
python deepseek_coder.py --prompt "write a quick sort algorithm in python."
|
||||||
|
```
|
||||||
|
|
||||||
|
[^1]: For more information [blog post](https://deepseekcoder.github.io/) by
|
||||||
|
DeepSeek AI
|
154
llms/deepseek-coder/convert.py
Normal file
154
llms/deepseek-coder/convert.py
Normal file
@ -0,0 +1,154 @@
|
|||||||
|
import argparse
|
||||||
|
import copy
|
||||||
|
import json
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import mlx.core as mx
|
||||||
|
import mlx.nn as nn
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from deepseek_coder import DeepseekCoder, ModelArgs
|
||||||
|
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
||||||
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||||
|
|
||||||
|
|
||||||
|
def quantize(weights, config, args):
|
||||||
|
quantized_config = copy.deepcopy(config)
|
||||||
|
|
||||||
|
# Load the model:
|
||||||
|
model_args = ModelArgs(**config)
|
||||||
|
model = DeepseekCoder(model_args)
|
||||||
|
|
||||||
|
weights = tree_map(mx.array, weights)
|
||||||
|
model.update(tree_unflatten(list(weights.items())))
|
||||||
|
|
||||||
|
# Quantize the model:
|
||||||
|
nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
|
||||||
|
|
||||||
|
# Update the config:
|
||||||
|
quantized_config["quantization"] = {
|
||||||
|
"group_size": args.q_group_size,
|
||||||
|
"bits": args.q_bits,
|
||||||
|
}
|
||||||
|
quantized_weights = dict(tree_flatten(model.parameters()))
|
||||||
|
|
||||||
|
return quantized_weights, quantized_config
|
||||||
|
|
||||||
|
|
||||||
|
def convert(args):
|
||||||
|
hf_path = Path(args.hf_path)
|
||||||
|
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
str(hf_path), trust_remote_code=True, torch_dtype=torch.float16
|
||||||
|
)
|
||||||
|
config = model.config.to_dict()
|
||||||
|
|
||||||
|
state_dict = model.state_dict()
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(str(hf_path), trust_remote_code=True)
|
||||||
|
|
||||||
|
# things to change
|
||||||
|
# 1. there's no "model." in the weight names
|
||||||
|
state_dict = {k.replace("model.", ""): v for k, v in state_dict.items()}
|
||||||
|
|
||||||
|
# 2. mlp is called feed_forward
|
||||||
|
state_dict = {k.replace("mlp", "feed_forward"): v for k, v in state_dict.items()}
|
||||||
|
|
||||||
|
# 3. up_proj, down_proj, gate_proj
|
||||||
|
state_dict = {k.replace("down_proj", "w2"): v for k, v in state_dict.items()}
|
||||||
|
state_dict = {k.replace("up_proj", "w3"): v for k, v in state_dict.items()}
|
||||||
|
state_dict = {k.replace("gate_proj", "w1"): v for k, v in state_dict.items()}
|
||||||
|
|
||||||
|
# 4. layernorms
|
||||||
|
state_dict = {
|
||||||
|
k.replace("input_layernorm", "attention_norm"): v for k, v in state_dict.items()
|
||||||
|
}
|
||||||
|
state_dict = {
|
||||||
|
k.replace("post_attention_layernorm", "ffn_norm"): v
|
||||||
|
for k, v in state_dict.items()
|
||||||
|
}
|
||||||
|
|
||||||
|
# 5. lm head
|
||||||
|
state_dict = {k.replace("lm_head", "output"): v for k, v in state_dict.items()}
|
||||||
|
|
||||||
|
# 6. token emb
|
||||||
|
state_dict = {
|
||||||
|
k.replace("embed_tokens", "tok_embeddings"): v for k, v in state_dict.items()
|
||||||
|
}
|
||||||
|
|
||||||
|
# 7. attention
|
||||||
|
state_dict = {k.replace("self_attn", "attention"): v for k, v in state_dict.items()}
|
||||||
|
state_dict = {k.replace("q_proj", "wq"): v for k, v in state_dict.items()}
|
||||||
|
state_dict = {k.replace("k_proj", "wk"): v for k, v in state_dict.items()}
|
||||||
|
state_dict = {k.replace("v_proj", "wv"): v for k, v in state_dict.items()}
|
||||||
|
state_dict = {k.replace("o_proj", "wo"): v for k, v in state_dict.items()}
|
||||||
|
|
||||||
|
weights = {k: v.numpy() for k, v in state_dict.items()}
|
||||||
|
|
||||||
|
config["rope_scaling_factor"] = config["rope_scaling"]["factor"]
|
||||||
|
keep_keys = set(
|
||||||
|
[
|
||||||
|
"vocab_size",
|
||||||
|
"hidden_size",
|
||||||
|
"num_attention_heads",
|
||||||
|
"num_key_value_heads",
|
||||||
|
"num_hidden_layers",
|
||||||
|
"max_position_embeddings",
|
||||||
|
"rms_norm_eps",
|
||||||
|
"intermediate_size",
|
||||||
|
"rope_scaling_factor",
|
||||||
|
]
|
||||||
|
)
|
||||||
|
for k in list(config.keys()):
|
||||||
|
if k not in keep_keys:
|
||||||
|
config.pop(k)
|
||||||
|
|
||||||
|
return weights, config, tokenizer
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser(description="Convert Deepseek coder model to npz")
|
||||||
|
parser.add_argument(
|
||||||
|
"--hf-path",
|
||||||
|
help="The huggingface model to be converted",
|
||||||
|
default="deepseek-ai/deepseek-coder-6.7b-instruct",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--mlx-path",
|
||||||
|
type=str,
|
||||||
|
default="mlx_model",
|
||||||
|
help="The path to save the MLX model.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"-q",
|
||||||
|
"--quantize",
|
||||||
|
help="Generate a quantized model.",
|
||||||
|
action="store_true",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--q-group-size",
|
||||||
|
help="Group size for quantization.",
|
||||||
|
type=int,
|
||||||
|
default=64,
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--q-bits",
|
||||||
|
help="Bits per weight for quantization.",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
mlx_path = Path(args.mlx_path)
|
||||||
|
mlx_path.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
weights, config, tokenizer = convert(args)
|
||||||
|
|
||||||
|
if args.quantize:
|
||||||
|
print("[INFO] Quantizing")
|
||||||
|
weights, config = quantize(weights, config, args)
|
||||||
|
|
||||||
|
np.savez(str(mlx_path / "weights.npz"), **weights)
|
||||||
|
tokenizer.save_pretrained(mlx_path)
|
||||||
|
with open(mlx_path / "config.json", "w") as f:
|
||||||
|
config["model_type"] = "deepseek_coder"
|
||||||
|
json.dump(config, f, indent=4)
|
309
llms/deepseek-coder/deepseek_coder.py
Normal file
309
llms/deepseek-coder/deepseek_coder.py
Normal file
@ -0,0 +1,309 @@
|
|||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
import math
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Optional, Tuple
|
||||||
|
|
||||||
|
import mlx.core as mx
|
||||||
|
import mlx.nn as nn
|
||||||
|
from mlx.utils import tree_unflatten
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class ModelArgs:
|
||||||
|
hidden_size: int = 4096
|
||||||
|
num_attention_heads: int = 32
|
||||||
|
num_hidden_layers: int = 32
|
||||||
|
num_key_value_heads: int = 32
|
||||||
|
max_position_embeddings: int = 16384
|
||||||
|
rms_norm_eps: float = 1e-6
|
||||||
|
intermediate_size: int = 11008
|
||||||
|
rope_theta: float = 100000
|
||||||
|
rope_scaling_factor: float = 4.0
|
||||||
|
vocab_size: int = 32256
|
||||||
|
|
||||||
|
|
||||||
|
class RMSNorm(nn.Module):
|
||||||
|
def __init__(self, dims: int, eps: float = 1e-5):
|
||||||
|
super().__init__()
|
||||||
|
self.weight = mx.ones((dims,))
|
||||||
|
self.eps = eps
|
||||||
|
|
||||||
|
def _norm(self, x):
|
||||||
|
return x * mx.rsqrt(x.square().mean(-1, keepdims=True) + self.eps)
|
||||||
|
|
||||||
|
def __call__(self, x):
|
||||||
|
output = self._norm(x.astype(mx.float32)).astype(x.dtype)
|
||||||
|
return self.weight * output
|
||||||
|
|
||||||
|
|
||||||
|
class LinearScalingRoPE(nn.RoPE):
|
||||||
|
def __init__(
|
||||||
|
self, dims: int, rope_scaling_factor: float = 4.0, base: float = 10000
|
||||||
|
):
|
||||||
|
super().__init__(dims)
|
||||||
|
self.base = base
|
||||||
|
self.rope_scaling_factor = rope_scaling_factor
|
||||||
|
|
||||||
|
def __call__(self, x, offset: int = 0):
|
||||||
|
shape = x.shape
|
||||||
|
x = mx.reshape(x, (-1, shape[-2], shape[-1]))
|
||||||
|
N = x.shape[1] + offset
|
||||||
|
costheta, sintheta = LinearScalingRoPE.create_cos_sin_theta(
|
||||||
|
N,
|
||||||
|
self.dims,
|
||||||
|
offset=offset,
|
||||||
|
base=self.base,
|
||||||
|
rope_scaling_factor=self.rope_scaling_factor,
|
||||||
|
dtype=x.dtype,
|
||||||
|
)
|
||||||
|
|
||||||
|
rx = self._compute_rope(costheta, sintheta, x)
|
||||||
|
|
||||||
|
return mx.reshape(rx, shape)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def create_cos_sin_theta(
|
||||||
|
N: int,
|
||||||
|
D: int,
|
||||||
|
offset: int = 0,
|
||||||
|
base: float = 10000,
|
||||||
|
rope_scaling_factor: float = 1.0,
|
||||||
|
dtype=mx.float32,
|
||||||
|
):
|
||||||
|
D = D // 2
|
||||||
|
positions = mx.arange(offset, N, dtype=dtype)
|
||||||
|
positions = positions / rope_scaling_factor
|
||||||
|
freqs = mx.exp(-mx.arange(0.0, D, dtype=dtype) * (math.log(base) / D))
|
||||||
|
theta = mx.reshape(positions, (-1, 1)) * mx.reshape(freqs, (1, -1))
|
||||||
|
return mx.cos(theta), mx.sin(theta)
|
||||||
|
|
||||||
|
|
||||||
|
class Attention(nn.Module):
|
||||||
|
def __init__(self, args: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
self.num_attention_heads: int = args.num_attention_heads
|
||||||
|
self.num_key_value_heads: int = args.num_key_value_heads
|
||||||
|
self.repeats = self.num_attention_heads // self.num_key_value_heads
|
||||||
|
|
||||||
|
self.head_dim = args.hidden_size // args.num_attention_heads
|
||||||
|
|
||||||
|
self.scale = self.head_dim**-0.5
|
||||||
|
|
||||||
|
self.wq = nn.Linear(
|
||||||
|
args.hidden_size, args.num_attention_heads * self.head_dim, bias=False
|
||||||
|
)
|
||||||
|
self.wk = nn.Linear(
|
||||||
|
args.hidden_size, args.num_key_value_heads * self.head_dim, bias=False
|
||||||
|
)
|
||||||
|
self.wv = nn.Linear(
|
||||||
|
args.hidden_size, args.num_key_value_heads * self.head_dim, bias=False
|
||||||
|
)
|
||||||
|
self.wo = nn.Linear(
|
||||||
|
args.num_attention_heads * self.head_dim, args.hidden_size, bias=False
|
||||||
|
)
|
||||||
|
self.rope = LinearScalingRoPE(
|
||||||
|
self.head_dim,
|
||||||
|
rope_scaling_factor=args.rope_scaling_factor,
|
||||||
|
base=args.rope_theta,
|
||||||
|
)
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
x: mx.array,
|
||||||
|
mask: Optional[mx.array] = None,
|
||||||
|
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||||
|
) -> mx.array:
|
||||||
|
B, L, D = x.shape
|
||||||
|
|
||||||
|
queries, keys, values = self.wq(x), self.wk(x), self.wv(x)
|
||||||
|
|
||||||
|
# Prepare the queries, keys and values for the attention computation
|
||||||
|
queries = queries.reshape(B, L, self.num_attention_heads, -1).transpose(
|
||||||
|
0, 2, 1, 3
|
||||||
|
)
|
||||||
|
keys = keys.reshape(B, L, self.num_key_value_heads, -1).transpose(0, 2, 1, 3)
|
||||||
|
values = values.reshape(B, L, self.num_key_value_heads, -1).transpose(
|
||||||
|
0, 2, 1, 3
|
||||||
|
)
|
||||||
|
|
||||||
|
def repeat(a):
|
||||||
|
a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2)
|
||||||
|
return a.reshape([B, self.num_attention_heads, L, -1])
|
||||||
|
|
||||||
|
keys, values = map(repeat, (keys, values))
|
||||||
|
|
||||||
|
if cache is not None:
|
||||||
|
key_cache, value_cache = cache
|
||||||
|
queries = self.rope(queries, offset=key_cache.shape[2])
|
||||||
|
keys = self.rope(keys, offset=key_cache.shape[2])
|
||||||
|
keys = mx.concatenate([key_cache, keys], axis=2)
|
||||||
|
values = mx.concatenate([value_cache, values], axis=2)
|
||||||
|
else:
|
||||||
|
queries = self.rope(queries)
|
||||||
|
keys = self.rope(keys)
|
||||||
|
|
||||||
|
scores = (queries * self.scale) @ keys.transpose(0, 1, 3, 2)
|
||||||
|
if mask is not None:
|
||||||
|
scores += mask
|
||||||
|
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
|
||||||
|
output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||||
|
return self.wo(output), (keys, values)
|
||||||
|
|
||||||
|
|
||||||
|
class FeedForward(nn.Module):
|
||||||
|
def __init__(self, args: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
self.w1 = nn.Linear(args.hidden_size, args.intermediate_size, bias=False)
|
||||||
|
self.w2 = nn.Linear(args.intermediate_size, args.hidden_size, bias=False)
|
||||||
|
self.w3 = nn.Linear(args.hidden_size, args.intermediate_size, bias=False)
|
||||||
|
|
||||||
|
def __call__(self, x) -> mx.array:
|
||||||
|
return self.w2(nn.silu(self.w1(x)) * self.w3(x))
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerBlock(nn.Module):
|
||||||
|
def __init__(self, args: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
self.attention = Attention(args)
|
||||||
|
self.feed_forward = FeedForward(args=args)
|
||||||
|
self.attention_norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||||
|
self.ffn_norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
x: mx.array,
|
||||||
|
mask: Optional[mx.array] = None,
|
||||||
|
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||||
|
) -> mx.array:
|
||||||
|
r, cache = self.attention(self.attention_norm(x), mask, cache)
|
||||||
|
h = x + r
|
||||||
|
r = self.feed_forward(self.ffn_norm(h))
|
||||||
|
out = h + r
|
||||||
|
return out, cache
|
||||||
|
|
||||||
|
|
||||||
|
class DeepseekCoder(nn.Module):
|
||||||
|
def __init__(self, args: ModelArgs):
|
||||||
|
super().__init__()
|
||||||
|
self.args = args
|
||||||
|
self.vocab_size = args.vocab_size
|
||||||
|
self.tok_embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
|
||||||
|
self.layers = [
|
||||||
|
TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
|
||||||
|
]
|
||||||
|
self.norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||||||
|
self.output = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||||
|
|
||||||
|
def __call__(self, x, mask=None, cache=None):
|
||||||
|
x = self.tok_embeddings(x)
|
||||||
|
mask = None
|
||||||
|
T = x.shape[1]
|
||||||
|
if T > 1:
|
||||||
|
mask = nn.MultiHeadAttention.create_additive_causal_mask(T)
|
||||||
|
mask = mask.astype(x.dtype)
|
||||||
|
|
||||||
|
if cache is None:
|
||||||
|
cache = [None] * len(self.layers)
|
||||||
|
|
||||||
|
for e, layer in enumerate(self.layers):
|
||||||
|
x, cache[e] = layer(x, mask, cache[e])
|
||||||
|
x = self.norm(x)
|
||||||
|
return self.output(x), cache
|
||||||
|
|
||||||
|
|
||||||
|
def generate(
|
||||||
|
prompt: mx.array,
|
||||||
|
model: DeepseekCoder,
|
||||||
|
temp: float = 0.0,
|
||||||
|
):
|
||||||
|
def sample(logits):
|
||||||
|
if temp == 0:
|
||||||
|
return mx.argmax(logits, axis=-1)
|
||||||
|
else:
|
||||||
|
return mx.random.categorical(logits * (1 / temp))
|
||||||
|
|
||||||
|
y = prompt
|
||||||
|
cache = None
|
||||||
|
while True:
|
||||||
|
logits, cache = model(y[None], cache=cache)
|
||||||
|
logits = logits[:, -1, :]
|
||||||
|
y = sample(logits)
|
||||||
|
yield y
|
||||||
|
|
||||||
|
|
||||||
|
def load_model(model_path: str):
|
||||||
|
model_path = Path(model_path)
|
||||||
|
with open(model_path / "config.json", "r") as f:
|
||||||
|
config = json.load(f)
|
||||||
|
config.pop("model_type")
|
||||||
|
quantization = config.pop("quantization", None)
|
||||||
|
model_args = ModelArgs(**config)
|
||||||
|
|
||||||
|
model = DeepseekCoder(model_args)
|
||||||
|
weights = mx.load(str(model_path / "weights.npz"))
|
||||||
|
if quantization := config.get("quantization", False):
|
||||||
|
nn.QuantizedLinear.quantize_module(model, **quantization)
|
||||||
|
model.update(tree_unflatten(list(weights.items())))
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
|
return model, tokenizer
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser(description="Deepseek coder inference script")
|
||||||
|
parser.add_argument(
|
||||||
|
"--model-path",
|
||||||
|
type=str,
|
||||||
|
default="mlx_model",
|
||||||
|
help="The path to the mlx model weights, tokenizer, and config",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--prompt",
|
||||||
|
help="The message to be processed by the model",
|
||||||
|
default="### Instruction: \nwrite a quick sort algorithm in python.\n### Response: \n",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-tokens",
|
||||||
|
"-m",
|
||||||
|
type=int,
|
||||||
|
default=100,
|
||||||
|
help="Maximum number of tokens to generate",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--temp",
|
||||||
|
help="The sampling temperature.",
|
||||||
|
type=float,
|
||||||
|
default=0.6,
|
||||||
|
)
|
||||||
|
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
mx.random.seed(args.seed)
|
||||||
|
|
||||||
|
model, tokenizer = load_model(args.model_path)
|
||||||
|
|
||||||
|
prompt = tokenizer(args.prompt, return_tensors="np", return_attention_mask=False,)[
|
||||||
|
"input_ids"
|
||||||
|
][0]
|
||||||
|
|
||||||
|
prompt = mx.array(prompt)
|
||||||
|
|
||||||
|
print(args.prompt, end="", flush=True)
|
||||||
|
|
||||||
|
tokens = []
|
||||||
|
skip = 0
|
||||||
|
for token, _ in zip(
|
||||||
|
generate(prompt, model, args.temp),
|
||||||
|
range(args.max_tokens),
|
||||||
|
):
|
||||||
|
if token == tokenizer.eos_token_id:
|
||||||
|
break
|
||||||
|
tokens.append(token.item())
|
||||||
|
s = tokenizer.decode(tokens)
|
||||||
|
print(s[skip:], end="", flush=True)
|
||||||
|
skip = len(s)
|
||||||
|
|
||||||
|
print(tokenizer.decode(tokens)[skip:], flush=True)
|
4
llms/deepseek-coder/requirements.txt
Normal file
4
llms/deepseek-coder/requirements.txt
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
torch
|
||||||
|
mlx
|
||||||
|
numpy
|
||||||
|
transformers>=4.35
|
@ -15,6 +15,7 @@ import torch
|
|||||||
from llama import Llama, ModelArgs, sanitize_config
|
from llama import Llama, ModelArgs, sanitize_config
|
||||||
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
||||||
|
|
||||||
|
|
||||||
def llama(model_path):
|
def llama(model_path):
|
||||||
SHARD_FIRST = ["wv", "wq", "wk", "w1", "w3", "output"]
|
SHARD_FIRST = ["wv", "wq", "wk", "w1", "w3", "output"]
|
||||||
SHARD_SECOND = ["tok_embeddings", "wo", "w2"]
|
SHARD_SECOND = ["tok_embeddings", "wo", "w2"]
|
||||||
@ -185,13 +186,13 @@ if __name__ == "__main__":
|
|||||||
action="store_true",
|
action="store_true",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--q_group_size",
|
"--q-group-size",
|
||||||
help="Group size for quantization.",
|
help="Group size for quantization.",
|
||||||
type=int,
|
type=int,
|
||||||
default=64,
|
default=64,
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--q_bits",
|
"--q-bits",
|
||||||
help="Bits per weight for quantization.",
|
help="Bits per weight for quantization.",
|
||||||
type=int,
|
type=int,
|
||||||
default=4,
|
default=4,
|
||||||
|
@ -57,13 +57,13 @@ if __name__ == "__main__":
|
|||||||
action="store_true",
|
action="store_true",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--q_group_size",
|
"--q-group-size",
|
||||||
help="Group size for quantization.",
|
help="Group size for quantization.",
|
||||||
type=int,
|
type=int,
|
||||||
default=64,
|
default=64,
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--q_bits",
|
"--q-bits",
|
||||||
help="Bits per weight for quantization.",
|
help="Bits per weight for quantization.",
|
||||||
type=int,
|
type=int,
|
||||||
default=4,
|
default=4,
|
||||||
|
@ -110,13 +110,13 @@ if __name__ == "__main__":
|
|||||||
action="store_true",
|
action="store_true",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--q_group_size",
|
"--q-group-size",
|
||||||
help="Group size for quantization.",
|
help="Group size for quantization.",
|
||||||
type=int,
|
type=int,
|
||||||
default=64,
|
default=64,
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--q_bits",
|
"--q-bits",
|
||||||
help="Bits per weight for quantization.",
|
help="Bits per weight for quantization.",
|
||||||
type=int,
|
type=int,
|
||||||
default=4,
|
default=4,
|
||||||
|
@ -56,13 +56,13 @@ def convert():
|
|||||||
action="store_true",
|
action="store_true",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--q_group_size",
|
"--q-group-size",
|
||||||
help="Group size for quantization.",
|
help="Group size for quantization.",
|
||||||
type=int,
|
type=int,
|
||||||
default=64,
|
default=64,
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--q_bits",
|
"--q-bits",
|
||||||
help="Bits per weight for quantization.",
|
help="Bits per weight for quantization.",
|
||||||
type=int,
|
type=int,
|
||||||
default=4,
|
default=4,
|
||||||
|
@ -60,7 +60,12 @@ def convert(args):
|
|||||||
args.model, trust_remote_code=True, torch_dtype=torch.float16
|
args.model, trust_remote_code=True, torch_dtype=torch.float16
|
||||||
)
|
)
|
||||||
state_dict = model.state_dict()
|
state_dict = model.state_dict()
|
||||||
weights = {replace_key(k): (v.numpy() if v.dtype != torch.bfloat16 else v.to(torch.float32).numpy()) for k, v in state_dict.items()}
|
weights = {
|
||||||
|
replace_key(k): (
|
||||||
|
v.numpy() if v.dtype != torch.bfloat16 else v.to(torch.float32).numpy()
|
||||||
|
)
|
||||||
|
for k, v in state_dict.items()
|
||||||
|
}
|
||||||
config = model.config.to_dict()
|
config = model.config.to_dict()
|
||||||
|
|
||||||
if args.quantize:
|
if args.quantize:
|
||||||
@ -95,13 +100,13 @@ if __name__ == "__main__":
|
|||||||
action="store_true",
|
action="store_true",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--q_group_size",
|
"--q-group-size",
|
||||||
help="Group size for quantization.",
|
help="Group size for quantization.",
|
||||||
type=int,
|
type=int,
|
||||||
default=64,
|
default=64,
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--q_bits",
|
"--q-bits",
|
||||||
help="Bits per weight for quantization.",
|
help="Bits per weight for quantization.",
|
||||||
type=int,
|
type=int,
|
||||||
default=4,
|
default=4,
|
||||||
|
Loading…
Reference in New Issue
Block a user