feat: move lora into mlx-lm (#337)

* feat: Add lora and qlora training to mlx-lm


---------

Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
Anchen
2024-01-23 08:44:37 -08:00
committed by GitHub
parent 85c1ff8fd6
commit 362e88a744
13 changed files with 987 additions and 111 deletions

View File

88
llms/mlx_lm/tuner/lora.py Normal file
View File

@@ -0,0 +1,88 @@
import math
import mlx.core as mx
import mlx.nn as nn
class LoRALinear(nn.Module):
@staticmethod
def from_linear(linear: nn.Linear, rank: int = 8, scale: float = 20.0):
# TODO remove when input_dims and output_dims are attributes
# on linear and quantized linear
output_dims, input_dims = linear.weight.shape
if isinstance(linear, nn.QuantizedLinear):
input_dims *= 32 // linear.bits
lora_lin = LoRALinear(
input_dims=input_dims, output_dims=output_dims, rank=rank, scale=scale
)
lora_lin.linear = linear
return lora_lin
def to_linear(self):
linear = self.linear
bias = "bias" in linear
weight = linear.weight
is_quantized = isinstance(linear, nn.QuantizedLinear)
# Use the same type as the linear weight if not quantized
dtype = weight.dtype
if is_quantized:
dtype = mx.float16
weight = mx.dequantize(
weight,
linear.scales,
linear.biases,
linear.group_size,
linear.bits,
)
output_dims, input_dims = weight.shape
fused_linear = nn.Linear(input_dims, output_dims, bias=bias)
lora_b = (self.scale * self.lora_b.T).astype(dtype)
lora_a = self.lora_a.T.astype(dtype)
fused_linear.weight = weight + lora_b @ lora_a
if bias:
fused_linear.bias = linear.bias
if is_quantized:
fused_linear = nn.QuantizedLinear.from_linear(
fused_linear,
linear.group_size,
linear.bits,
)
return fused_linear
def __init__(
self,
input_dims: int,
output_dims: int,
rank: int = 8,
bias: bool = False,
scale: float = 20.0,
):
super().__init__()
# Regular linear layer weights
self.linear = nn.Linear(input_dims, output_dims, bias=bias)
# Scale for low-rank update
self.scale = scale
# Low rank lora weights
scale = 1 / math.sqrt(input_dims)
self.lora_a = mx.random.uniform(
low=-scale,
high=scale,
shape=(input_dims, rank),
)
self.lora_b = mx.zeros(shape=(rank, output_dims))
def __call__(self, x):
dtype = self.linear.weight.dtype
if isinstance(self.linear, nn.QuantizedLinear):
dtype = self.linear.scales.dtype
y = self.linear(x.astype(dtype))
z = (x @ self.lora_a) @ self.lora_b
return y + self.scale * z

View File

@@ -0,0 +1,204 @@
import os
import time
from dataclasses import dataclass, field
import mlx.core as mx
import mlx.nn as nn
import numpy as np
from mlx.utils import tree_flatten
@dataclass
class TrainingArgs:
lora_layers: int = field(
default=16, metadata={"help": "Number of layers to fine-tune"}
)
batch_size: int = field(default=4, metadata={"help": "Minibatch size."})
iters: int = field(default=100, metadata={"help": "Iterations to train for."})
val_batches: int = field(
default=25,
metadata={
"help": "Number of validation batches, -1 uses the entire validation set."
},
)
steps_per_report: int = field(
default=10,
metadata={"help": "Number of training steps between loss reporting."},
)
steps_per_eval: int = field(
default=200, metadata={"help": "Number of training steps between validations."}
)
steps_per_save: int = field(
default=100, metadata={"help": "Save the model every number steps"}
)
max_seq_length: int = field(
default=2048, metadata={"help": "Maximum sequence length."}
)
adapter_file: str = field(
default="adapter.npz",
metadata={"help": "Save/load path for the trained adapter weights."},
)
def default_loss(model, inputs, targets, lengths):
logits, _ = model(inputs)
logits = logits.astype(mx.float32)
length_mask = mx.arange(inputs.shape[1])[None, :] < lengths[:, None]
ce = nn.losses.cross_entropy(logits, targets) * length_mask
ntoks = length_mask.sum()
ce = ce.sum() / ntoks
return ce, ntoks
def iterate_batches(dataset, tokenizer, batch_size, max_seq_length, train=False):
while True:
# Shuffle indices
indices = np.arange(len(dataset))
indices = np.random.permutation(indices)
# Collect batches from dataset
for i in range(0, len(indices) - batch_size + 1, batch_size):
# Encode batch
batch = [
tokenizer.encode(dataset[indices[i + j]]) for j in range(batch_size)
]
lengths = [len(x) for x in batch]
# Check if any sequence is longer than max_seq_length
if max(lengths) > max_seq_length:
print(
"[WARNING] Some sequences are longer than 2048 tokens. "
"Consider pre-splitting your data to save memory."
)
# Pad to the max length
batch_arr = np.zeros((batch_size, max(lengths)), np.int32)
for j in range(batch_size):
batch_arr[j, : lengths[j]] = batch[j]
batch = mx.array(batch_arr)
yield batch[:, :-1], batch[:, 1:], mx.array(lengths)
if not train:
break
def evaluate(
model,
dataset,
tokenizer,
batch_size,
num_batches,
max_seq_length=2048,
loss: callable = default_loss,
):
all_losses = []
ntokens = 0
for it, batch in zip(
range(num_batches),
iterate_batches(
dataset=dataset,
tokenizer=tokenizer,
batch_size=batch_size,
max_seq_length=max_seq_length,
),
):
losses, toks = loss(model, *batch)
all_losses.append((losses * toks).item())
ntokens += toks.item()
return np.sum(all_losses) / ntokens
def train(
model,
tokenizer,
optimizer,
train_dataset,
val_dataset,
args: TrainingArgs = TrainingArgs(),
loss: callable = default_loss,
):
# Create value and grad function for loss
loss_value_and_grad = nn.value_and_grad(model, loss)
losses = []
n_tokens = 0
print("Starting training..., iters:", args.iters)
# Main training loop
start = time.perf_counter()
for it, batch in zip(
range(args.iters),
iterate_batches(
dataset=train_dataset,
tokenizer=tokenizer,
batch_size=args.batch_size,
max_seq_length=args.max_seq_length,
train=True,
),
):
# Forward and backward pass
(lvalue, toks), grad = loss_value_and_grad(model, *batch)
# Model update
optimizer.update(model, grad)
mx.eval(model.parameters(), optimizer.state, lvalue)
# Record loss
losses.append(lvalue.item())
n_tokens += toks.item()
# Report training loss if needed
if (it + 1) % args.steps_per_report == 0:
train_loss = np.mean(losses)
stop = time.perf_counter()
print(
f"Iter {it + 1}: Train loss {train_loss:.3f}, "
f"It/sec {args.steps_per_report / (stop - start):.3f}, "
f"Tokens/sec {float(n_tokens) / (stop - start):.3f}"
)
losses = []
n_tokens = 0
start = time.perf_counter()
# Report validation loss if needed
if it == 0 or (it + 1) % args.steps_per_eval == 0:
stop = time.perf_counter()
val_loss = evaluate(
model=model,
dataset=val_dataset,
loss=loss,
tokenizer=tokenizer,
batch_size=args.batch_size,
num_batches=args.val_batches,
)
print(
f"Iter {it + 1}: "
f"Val loss {val_loss:.3f}, "
f"Val took {(time.perf_counter() - stop):.3f}s"
)
start = time.perf_counter()
# Save adapter weights if needed
if (it + 1) % args.steps_per_save == 0:
save_adapter(model=model, adapter_file=args.adapter_file)
print(
f"Iter {it + 1}: Saved adapter weights to {os.path.join(args.adapter_file)}."
)
# save final adapter weights
save_adapter(model=model, adapter_file=args.adapter_file)
print(f"Saved final adapter weights to {os.path.join(args.adapter_file)}.")
def save_adapter(
model: nn.Module,
adapter_file: str,
):
flattened_tree = tree_flatten(model.trainable_parameters())
mx.savez(adapter_file, **dict(flattened_tree))

View File

@@ -0,0 +1,22 @@
import mlx.core as mx
from mlx.utils import tree_unflatten
from .lora import LoRALinear
def apply_lora_layers(model, adapter_file: str):
adapters = list(mx.load(adapter_file).items())
linear_replacements = {}
lora_layers = set(
[name.replace(".lora_a", "").replace(".lora_b", "") for name, _ in adapters]
)
for name, module in model.named_modules():
if name in lora_layers:
replacement_module = LoRALinear.from_linear(module)
linear_replacements[name] = replacement_module
model.update_modules(tree_unflatten(list(linear_replacements.items())))
model.update(tree_unflatten(adapters))
return model