qlora
This commit is contained in:
Awni Hannun
2024-01-04 21:05:59 -08:00
committed by GitHub
parent 4fa659acbd
commit 37b41cec60
8 changed files with 137 additions and 51 deletions

View File

@@ -1,69 +1,125 @@
# Copyright © 2023 Apple Inc.
import argparse
import copy
import json
import os
import shutil
from pathlib import Path
import mlx.core as mx
import mlx.nn as nn
import numpy as np
import torch
from mlx.utils import tree_flatten, tree_map, tree_unflatten
from lora import Model, ModelArgs
def quantize(weights, config, args):
quantized_config = copy.deepcopy(config)
# Load the model:
model = Model(ModelArgs(**config))
weights = tree_map(mx.array, weights)
model.update(tree_unflatten(list(weights.items())))
# Quantize the model:
nn.QuantizedLinear.quantize_module(
model,
args.q_group_size,
args.q_bits,
linear_class_predicate=lambda m: isinstance(m, nn.Linear)
and m.weight.shape[0] != config["vocab_size"],
)
# Update the config:
quantized_config["quantization"] = {
"group_size": args.q_group_size,
"bits": args.q_bits,
}
quantized_weights = dict(tree_flatten(model.parameters()))
return quantized_weights, quantized_config
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Convert Mistral or Llama models to MLX.",
)
parser.add_argument(
"--torch-model",
"--torch-path",
type=str,
default="mistral-7B-v0.1/",
help="The torch model directory",
help="Path to the torch model directory",
)
parser.add_argument(
"--mlx-model",
"--mlx-path",
type=str,
default="mlx-mistral-7B-v0.1/",
default="mlx_model/",
help="The directory to store the mlx model",
)
parser.add_argument(
"-q",
"--quantize",
help="Generate a quantized model.",
action="store_true",
)
parser.add_argument(
"--q-group-size",
help="Group size for quantization.",
type=int,
default=64,
)
parser.add_argument(
"--q-bits",
help="Bits per weight for quantization.",
type=int,
default=4,
)
args = parser.parse_args()
torch_path = Path(args.torch_model)
if not os.path.exists(args.mlx_model):
os.makedirs(args.mlx_model)
mlx_path = Path(args.mlx_model)
args = parser.parse_args()
torch_path = Path(args.torch_path)
mlx_path = Path(args.mlx_path)
mlx_path.mkdir(parents=True, exist_ok=True)
# Copy the tokenizer
tokenizer_path = torch_path / "tokenizer.model"
if not tokenizer_path.exists():
print(f"Make sure there is a file tokenizer.model in {args.torch_model}")
print(f"Make sure there is a file tokenizer.model in {args.torch-path}")
exit(0)
shutil.copyfile(
str(tokenizer_path),
str(mlx_path / "tokenizer.model"),
)
# Copy the model weights
state = torch.load(str(torch_path / "consolidated.00.pth"))
np.savez(
str(mlx_path / "weights.npz"),
**{k: v.to(torch.float16).numpy() for k, v in state.items()},
)
# Load the torch model weights to numpy:
weights = torch.load(str(torch_path / "consolidated.00.pth"))
for k, v in weights.items():
weights[k] = v.to(torch.float16).numpy()
# Copy the params
# Standardize the params
with open(torch_path / "params.json", "r") as f:
config = json.loads(f.read())
unused = ["multiple_of"]
unused = ["multiple_of", "sliding_window"]
for k in unused:
if k in config:
config.pop(k)
config.pop(k, None)
n_heads = config["n_heads"]
if "sliding_window" in config:
config.pop("sliding_window")
if "n_kv_heads" not in config:
config["n_kv_heads"] = n_heads
if "head_dim" not in config:
config["head_dim"] = config["dim"] // n_heads
if "hidden_dim" not in config:
config["hidden_dim"] = state["layers.0.feed_forward.w1.weight"].shape[0]
with open(mlx_path / "params.json", "w") as outfile:
config["hidden_dim"] = weights["layers.0.feed_forward.w1.weight"].shape[0]
if config.get("vocab_size", -1) < 0:
config["vocab_size"] = weights["output.weight"].shape[0]
if args.quantize:
print("[INFO] Quantizing")
weights, config = quantize(weights, config, args)
np.savez(str(mlx_path / "weights.npz"), **weights)
with open(mlx_path / "config.json", "w") as outfile:
json.dump(config, outfile, indent=4)