mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-26 02:33:23 +08:00
fixed inference slowness but it cant handle multible Token inputs and is generateing gibberish
This commit is contained in:
parent
800b60239c
commit
3a499f9735
@ -350,28 +350,11 @@ class MambaCache:
|
|||||||
return [self.cache[1]]
|
return [self.cache[1]]
|
||||||
|
|
||||||
|
|
||||||
|
class Mamba2Cache:
|
||||||
class Mamba2Cache(_BaseCache):
|
def __init__(self):
|
||||||
def __init__(
|
self.conv_states = [None] # Initialize as None, will be set on first use
|
||||||
self,
|
self.ssm_states = [None] # Initialize as None, will be set on first use
|
||||||
batch_size,
|
|
||||||
conv_kernel
|
|
||||||
):
|
|
||||||
self.conv_kernel: mx.array = conv_kernel
|
|
||||||
self.conv_states: mx.array = [None]
|
|
||||||
self.ssm_states = [None]
|
|
||||||
self.seqlen_offset = 0
|
|
||||||
|
|
||||||
def reset(self):
|
@property
|
||||||
self.conv_states = None
|
def state(self):
|
||||||
self.ssm_state = None
|
return [self.conv_states[0], self.ssm_states[0]]
|
||||||
|
|
||||||
def update(self, layer_idx: int, new_conv_state: mx.array, cache_position: mx.array) -> mx.array:
|
|
||||||
conv_state = self.conv_states[layer_idx]
|
|
||||||
cache_position = cache_position.clamp(0, self.conv_kernel - 1)
|
|
||||||
|
|
||||||
conv_state = conv_state.roll(shifts=-1, dims=-1)
|
|
||||||
conv_state[:, :, cache_position] = new_conv_state
|
|
||||||
self.conv_states[layer_idx].zero_()
|
|
||||||
self.conv_states[layer_idx] += conv_state
|
|
||||||
return self.conv_states[layer_idx]
|
|
@ -1,11 +1,11 @@
|
|||||||
import math
|
import math
|
||||||
from dataclasses import dataclass, field
|
from dataclasses import dataclass, field
|
||||||
from typing import Tuple, Union, Optional
|
from typing import Tuple, Union
|
||||||
import mlx.core as mx
|
import mlx.core as mx
|
||||||
import mlx.nn as nn
|
import mlx.nn as nn
|
||||||
|
|
||||||
from .base import BaseModelArgs
|
from .base import BaseModelArgs
|
||||||
from .cache import MambaCache
|
from .cache import Mamba2Cache
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class ModelArgs(BaseModelArgs):
|
class ModelArgs(BaseModelArgs):
|
||||||
@ -56,186 +56,217 @@ class MambaRMSNormGated(nn.Module):
|
|||||||
variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True)
|
variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True)
|
||||||
hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon)
|
hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon)
|
||||||
return self.weight * hidden_states
|
return self.weight * hidden_states
|
||||||
|
|
||||||
|
|
||||||
def silu(x):
|
def silu(x):
|
||||||
return x * mx.sigmoid(x)
|
return x * mx.sigmoid(x)
|
||||||
|
|
||||||
|
|
||||||
def ssd(x, A, B, C, chunk_size):
|
def ssd(x, A, B, C, chunk_size):
|
||||||
# Not getting used
|
# Replace einsum operations with explicit reshape and matrix multiply
|
||||||
batch, seqlen, nheads, dim = x.shape
|
batch, seqlen, nheads, dim = x.shape
|
||||||
B = mx.expand_dims(B, axis=2)
|
B = mx.expand_dims(B, axis=2)
|
||||||
C = mx.expand_dims(C, axis=2)
|
C = mx.expand_dims(C, axis=2)
|
||||||
|
|
||||||
state = mx.zeros((batch, nheads, dim, B.shape[-1]))
|
state = mx.zeros((batch, nheads, dim, B.shape[-1]))
|
||||||
outputs = []
|
outputs = []
|
||||||
|
|
||||||
for i in range(0, seqlen, chunk_size):
|
for i in range(0, seqlen, chunk_size):
|
||||||
chunk = slice(i, min(i + chunk_size, seqlen))
|
chunk = slice(i, min(i + chunk_size, seqlen))
|
||||||
dA = mx.exp(mx.expand_dims(A[chunk], axis=0))
|
dA = mx.exp(mx.expand_dims(A[chunk], axis=0))
|
||||||
|
|
||||||
# Replace einsum with explicit operations
|
# Replace einsum with explicit operations
|
||||||
x_chunk = x[:, chunk] # [batch, chunk_size, nheads, dim]
|
x_chunk = x[:, chunk] # [batch, chunk_size, nheads, dim]
|
||||||
x_chunk = mx.transpose(x_chunk, [0, 2, 3, 1]) # [batch, nheads, dim, chunk_size]
|
x_chunk = mx.transpose(x_chunk, [0, 2, 3, 1]) # [batch, nheads, dim, chunk_size]
|
||||||
B_chunk = B[:, chunk] # [batch, chunk_size, state_size]
|
B_chunk = B[:, chunk] # [batch, chunk_size, state_size]
|
||||||
dBx = mx.matmul(x_chunk, B_chunk) # [batch, nheads, dim, state_size]
|
dBx = mx.matmul(x_chunk, B_chunk) # [batch, nheads, dim, state_size]
|
||||||
|
|
||||||
state = state * mx.expand_dims(dA, axis=-1) + dBx
|
state = state * mx.expand_dims(dA, axis=-1) + dBx
|
||||||
|
|
||||||
# Replace einsum with explicit operations
|
# Replace einsum with explicit operations
|
||||||
C_chunk = C[:, chunk] # [batch, chunk_size, state_size]
|
C_chunk = C[:, chunk] # [batch, chunk_size, state_size]
|
||||||
y = mx.matmul(state, mx.transpose(C_chunk, [0, 2, 1])) # [batch, nheads, dim, chunk_size]
|
y = mx.matmul(state, mx.transpose(C_chunk, [0, 2, 1])) # [batch, nheads, dim, chunk_size]
|
||||||
y = mx.transpose(y, [0, 3, 1, 2]) # [batch, chunk_size, nheads, dim]
|
y = mx.transpose(y, [0, 3, 1, 2]) # [batch, chunk_size, nheads, dim]
|
||||||
outputs.append(y)
|
outputs.append(y)
|
||||||
|
|
||||||
return mx.concatenate(outputs, axis=1), state
|
return mx.concatenate(outputs, axis=1), state
|
||||||
|
|
||||||
|
|
||||||
|
class DepthWiseConv1d(nn.Module):
|
||||||
|
def __init__(self, in_channels, out_channels, kernel_size, bias=True, groups=None, padding=0):
|
||||||
|
super().__init__()
|
||||||
|
self.in_channels = in_channels
|
||||||
|
self.out_channels = out_channels
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.padding = padding
|
||||||
|
self.groups = groups if groups is not None else in_channels
|
||||||
|
|
||||||
|
assert in_channels == out_channels, "In and out channels must be same for depthwise convolution"
|
||||||
|
assert self.groups == in_channels, "Groups must be equal to in_channels for depthwise convolution"
|
||||||
|
|
||||||
|
self.weight = mx.random.normal((in_channels, 1, kernel_size))
|
||||||
|
self.bias = mx.zeros((out_channels,)) if bias else None
|
||||||
|
|
||||||
|
def __call__(self, x: mx.array, cache=None) -> mx.array:
|
||||||
|
B, L, C = x.shape
|
||||||
|
K = self.kernel_size
|
||||||
|
|
||||||
|
assert C == self.in_channels, f"Input channels {C} doesn't match expected {self.in_channels}"
|
||||||
|
|
||||||
|
if cache is not None:
|
||||||
|
if isinstance(cache.conv_states[0], type(None)):
|
||||||
|
cache.conv_states[0] = mx.zeros((B, K-1, C))
|
||||||
|
|
||||||
|
x = mx.concatenate([cache.conv_states[0], x], axis=1)
|
||||||
|
|
||||||
|
outputs = []
|
||||||
|
for c in range(C):
|
||||||
|
# Input prep debug
|
||||||
|
x_c = x[:, :, c]
|
||||||
|
x_c = mx.expand_dims(x_c, axis=1)
|
||||||
|
|
||||||
|
# Weight prep debug
|
||||||
|
w_c = self.weight[c]
|
||||||
|
if w_c.ndim == 2:
|
||||||
|
w_c = mx.expand_dims(w_c, axis=0)
|
||||||
|
elif w_c.ndim == 1:
|
||||||
|
w_c = mx.expand_dims(mx.expand_dims(w_c, axis=0), axis=0)
|
||||||
|
|
||||||
|
y_c = mx.conv_general(
|
||||||
|
x_c,
|
||||||
|
w_c,
|
||||||
|
stride=1,
|
||||||
|
padding=0
|
||||||
|
)
|
||||||
|
if self.bias is not None:
|
||||||
|
y_c = y_c + self.bias[c]
|
||||||
|
|
||||||
|
y_c = mx.squeeze(y_c, axis=1)
|
||||||
|
outputs.append(y_c)
|
||||||
|
|
||||||
|
# Output statistics
|
||||||
|
y = mx.stack(outputs, axis=-1)
|
||||||
|
|
||||||
|
# Cache update debug
|
||||||
|
if cache is not None:
|
||||||
|
cache.conv_states[0] = x[:, -K+1:, :] if x.shape[1] >= K else x
|
||||||
|
|
||||||
|
return y
|
||||||
|
|
||||||
|
|
||||||
class Mamba2Block(nn.Module):
|
class Mamba2Block(nn.Module):
|
||||||
def __init__(self, args: ModelArgs):
|
def __init__(self, args: ModelArgs):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.args = args
|
self.args = args
|
||||||
self.chunk_size = args.chunk_size
|
|
||||||
|
|
||||||
d_in_proj = 2 * args.intermediate_size + 2 * args.state_size + args.num_heads
|
d_in_proj = 2 * args.intermediate_size + 2 * args.state_size + args.num_heads
|
||||||
self.in_proj = nn.Linear(args.hidden_size, d_in_proj, bias=args.use_bias)
|
self.in_proj = nn.Linear(args.hidden_size, d_in_proj, bias=args.use_bias)
|
||||||
|
|
||||||
self.conv_dim = args.intermediate_size + 2 * args.state_size
|
conv_dim = args.intermediate_size + 2 * args.state_size
|
||||||
|
self.conv1d = DepthWiseConv1d(
|
||||||
# Replace DepthWiseConv1d with grouped nn.Conv1d
|
in_channels=conv_dim,
|
||||||
self.conv1d = nn.Conv1d(
|
out_channels=conv_dim,
|
||||||
in_channels=self.conv_dim,
|
|
||||||
out_channels=self.conv_dim,
|
|
||||||
kernel_size=args.conv_kernel,
|
kernel_size=args.conv_kernel,
|
||||||
groups=self.conv_dim, # Makes it depthwise
|
groups=conv_dim,
|
||||||
bias=args.use_conv_bias,
|
bias=args.use_conv_bias,
|
||||||
padding=0 # We'll handle padding via cache
|
padding=args.conv_kernel - 1
|
||||||
)
|
)
|
||||||
|
|
||||||
self.dt_bias = mx.random.normal((args.num_heads,)) * args.initializer_range
|
# Initialize parameters
|
||||||
self.A_log = mx.random.normal((args.num_heads,)) * args.initializer_range
|
self.dt_bias = mx.ones(args.num_heads)
|
||||||
self.D = mx.random.normal((args.num_heads,)) * args.initializer_range
|
A = mx.arange(1, args.num_heads + 1)
|
||||||
|
self.A_log = mx.log(A)
|
||||||
|
self.D = mx.ones(args.num_heads)
|
||||||
|
|
||||||
self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon)
|
self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon)
|
||||||
self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
|
self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
|
||||||
|
|
||||||
if args.rescale_prenorm_residual:
|
if args.rescale_prenorm_residual:
|
||||||
layer_scale = math.sqrt(1.0 / args.num_hidden_layers)
|
layer_scale = math.sqrt(1.0 / args.num_hidden_layers)
|
||||||
self.out_proj.weight = self.out_proj.weight * layer_scale
|
self.out_proj.weight = self.out_proj.weight * layer_scale
|
||||||
|
|
||||||
def __call__(self, u: mx.array, cache: Optional[MambaCache] = None):
|
def __call__(self, u: mx.array, cache=None):
|
||||||
batch_size, seq_len, _ = u.shape
|
# Expect input to be shape [batch_size, 1, dim]
|
||||||
pad_size = self.chunk_size - (seq_len % self.chunk_size)
|
batch_size, seq_len, dimension = u.shape
|
||||||
|
assert seq_len == 1, "Input should be a single token"
|
||||||
|
|
||||||
# Initialize cache if needed
|
# Initialize cache if needed
|
||||||
if cache is None:
|
if cache.conv_states[0] is None:
|
||||||
cache = MambaCache()
|
conv_dim = self.args.intermediate_size + 2 * self.args.state_size
|
||||||
|
cache.conv_states[0] = mx.zeros((batch_size, self.args.conv_kernel - 1, conv_dim))
|
||||||
# Initialize states if needed
|
|
||||||
if cache[0] is None: # conv state
|
if cache.ssm_states[0] is None:
|
||||||
cache[0] = mx.zeros((
|
cache.ssm_states[0] = mx.zeros((
|
||||||
batch_size,
|
|
||||||
self.args.conv_kernel - 1,
|
|
||||||
self.conv_dim
|
|
||||||
))
|
|
||||||
|
|
||||||
if cache[1] is None: # ssm state
|
|
||||||
cache[1] = mx.zeros((
|
|
||||||
batch_size,
|
batch_size,
|
||||||
self.args.num_heads,
|
self.args.num_heads,
|
||||||
self.args.head_dim,
|
self.args.head_dim,
|
||||||
self.args.state_size
|
self.args.state_size
|
||||||
))
|
))
|
||||||
|
|
||||||
# Project input
|
# Project input
|
||||||
zxbcdt = self.in_proj(u)
|
zxbcdt = self.in_proj(u)
|
||||||
|
|
||||||
# Split projections
|
# Split projections
|
||||||
|
n_heads = self.args.num_heads
|
||||||
z = zxbcdt[:, :, :self.args.intermediate_size]
|
z = zxbcdt[:, :, :self.args.intermediate_size]
|
||||||
xBC = zxbcdt[:, :, self.args.intermediate_size:self.args.intermediate_size + 2*self.args.state_size + self.args.intermediate_size]
|
xBC = zxbcdt[:, :, self.args.intermediate_size:self.args.intermediate_size + 2*self.args.state_size + self.args.intermediate_size]
|
||||||
dt = zxbcdt[:, :, -(self.args.num_heads):]
|
dt = zxbcdt[:, :, -(n_heads):]
|
||||||
|
|
||||||
# Process delta time
|
# Time steps
|
||||||
dt = mx.reshape(dt, (batch_size, seq_len, self.args.num_heads))
|
dt = mx.reshape(dt, (batch_size, n_heads))
|
||||||
dt = mx.squeeze(dt, axis=0)
|
dt = mx.clip(nn.softplus(dt + self.dt_bias), self.args.time_step_min, self.args.time_step_max)
|
||||||
dt = mx.clip(
|
|
||||||
nn.softplus(dt + self.dt_bias),
|
|
||||||
self.args.time_step_min,
|
|
||||||
self.args.time_step_max
|
|
||||||
)
|
|
||||||
dt = mx.maximum(dt, self.args.time_step_floor)
|
dt = mx.maximum(dt, self.args.time_step_floor)
|
||||||
|
|
||||||
# Handle convolution caching and padding
|
# Convolution
|
||||||
conv_state = cache[0]
|
xBC = self.conv1d(xBC, cache=cache)
|
||||||
if conv_state is not None:
|
|
||||||
xBC = mx.concatenate([conv_state, xBC], axis=1)
|
|
||||||
|
|
||||||
# Prepare input for conv1d: [B, C, L]
|
|
||||||
xBC = mx.transpose(xBC, [0, 2, 1])
|
|
||||||
|
|
||||||
# Apply convolution
|
|
||||||
xBC = self.conv1d(xBC)
|
|
||||||
|
|
||||||
# Update cache state
|
|
||||||
cache[0] = mx.transpose(xBC, [0, 2, 1])[:, -self.args.conv_kernel+1:, :]
|
|
||||||
|
|
||||||
# Return to [B, L, C] format
|
|
||||||
xBC = mx.transpose(xBC, [0, 2, 1])
|
|
||||||
xBC = silu(xBC)
|
xBC = silu(xBC)
|
||||||
|
|
||||||
# Split conv output
|
# Split states
|
||||||
x = xBC[:, :, :self.args.intermediate_size]
|
x = xBC[:, :, :self.args.intermediate_size]
|
||||||
B = xBC[:, :, self.args.intermediate_size:self.args.intermediate_size + self.args.state_size]
|
B = xBC[:, :, self.args.intermediate_size:self.args.intermediate_size + self.args.state_size]
|
||||||
C = xBC[:, :, -self.args.state_size:]
|
C = xBC[:, :, -self.args.state_size:]
|
||||||
|
|
||||||
# Reshape for SSM
|
# Reshape for SSM
|
||||||
x = mx.reshape(x, (batch_size, seq_len, self.args.num_heads, self.args.head_dim))
|
x = mx.reshape(x, (batch_size, 1, n_heads, self.args.head_dim))
|
||||||
|
x = mx.squeeze(x, axis=1)
|
||||||
B = mx.reshape(B, (batch_size, seq_len, self.args.state_size))
|
B = mx.reshape(B, (batch_size, 1, self.args.state_size))
|
||||||
B = mx.broadcast_to(B, (batch_size, self.args.num_heads, self.args.state_size))
|
B = mx.broadcast_to(B, (batch_size, n_heads, self.args.state_size))
|
||||||
|
B = mx.expand_dims(B, axis=2)
|
||||||
C = mx.reshape(C, (batch_size, seq_len, self.args.state_size))
|
C = mx.reshape(C, (batch_size, 1, self.args.state_size))
|
||||||
C = mx.broadcast_to(C, (batch_size, self.args.num_heads, self.args.state_size))
|
C = mx.broadcast_to(C, (batch_size, n_heads, self.args.state_size))
|
||||||
|
C = mx.expand_dims(C, axis=3)
|
||||||
# SSM state update
|
|
||||||
ssm_state = cache[1]
|
# SSM updates
|
||||||
A = -mx.exp(self.A_log)
|
A = -mx.exp(self.A_log)
|
||||||
dA = mx.exp(dt * mx.expand_dims(A, 0))
|
dA = mx.exp(dt * mx.expand_dims(A, 0))
|
||||||
|
dA = mx.expand_dims(mx.expand_dims(dA, -1), -1)
|
||||||
x = mx.expand_dims(x, axis=-1)
|
|
||||||
dBx = mx.matmul(x, mx.expand_dims(B, axis=-2))
|
|
||||||
|
|
||||||
new_ssm_state = ssm_state * mx.expand_dims(dA, -1) + dBx
|
|
||||||
cache[1] = new_ssm_state
|
|
||||||
|
|
||||||
# Output computation
|
|
||||||
y = mx.matmul(new_ssm_state, mx.expand_dims(C, axis=-1))
|
|
||||||
y = mx.squeeze(y, axis=-1)
|
|
||||||
|
|
||||||
if pad_size > 0:
|
|
||||||
y = y[:, :seq_len, :, :]
|
|
||||||
|
|
||||||
# Final reshape and projections
|
|
||||||
y = mx.reshape(y, (batch_size, seq_len, -1))
|
|
||||||
y = self.norm(y + z)
|
|
||||||
|
|
||||||
return self.out_proj(y)
|
|
||||||
|
|
||||||
|
# Update state
|
||||||
|
x = mx.expand_dims(x, axis=3)
|
||||||
|
dBx = mx.matmul(x, B)
|
||||||
|
cache.ssm_states[0] = cache.ssm_states[0] * dA + dBx
|
||||||
|
|
||||||
|
# Compute output
|
||||||
|
y = mx.matmul(cache.ssm_states[0], C)
|
||||||
|
y = mx.squeeze(y, axis=-1)
|
||||||
|
y = y + x[:, :, :, 0] * mx.expand_dims(self.D, -1)
|
||||||
|
y = mx.reshape(y, (batch_size, 1, n_heads * self.args.head_dim))
|
||||||
|
y = self.norm(y + z)
|
||||||
|
|
||||||
|
return self.out_proj(y)
|
||||||
|
|
||||||
class ResidualBlock(nn.Module):
|
class ResidualBlock(nn.Module):
|
||||||
def __init__(self, args: ModelArgs):
|
def __init__(self, args: ModelArgs):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.residual_in_fp32 = args.residual_in_fp32
|
self.residual_in_fp32 = args.residual_in_fp32
|
||||||
|
|
||||||
self.mixer = Mamba2Block(args)
|
self.mixer = Mamba2Block(args)
|
||||||
self.norm = nn.RMSNorm(args.hidden_size)
|
self.norm = nn.RMSNorm(args.hidden_size)
|
||||||
|
|
||||||
def __call__(self, x: mx.array, cache):
|
def __call__(self, x: mx.array, cache):
|
||||||
if self.residual_in_fp32:
|
if self.residual_in_fp32:
|
||||||
x = x.astype(mx.float32)
|
x = x.astype(mx.float32)
|
||||||
return self.mixer(self.norm(x), cache) + x
|
normed = self.norm(x)
|
||||||
|
output = self.mixer(normed, cache)
|
||||||
|
return output + x
|
||||||
|
|
||||||
class Mamba2(nn.Module):
|
class Mamba2(nn.Module):
|
||||||
def __init__(self, args: ModelArgs):
|
def __init__(self, args: ModelArgs):
|
||||||
@ -249,9 +280,11 @@ class Mamba2(nn.Module):
|
|||||||
x = self.embeddings(x)
|
x = self.embeddings(x)
|
||||||
if cache is None:
|
if cache is None:
|
||||||
cache = [None] * len(self.layers)
|
cache = [None] * len(self.layers)
|
||||||
|
|
||||||
|
hidden = x
|
||||||
for layer, c in zip(self.layers, cache):
|
for layer, c in zip(self.layers, cache):
|
||||||
x = layer(x, c)
|
hidden = layer(hidden, c)
|
||||||
return self.norm_f(x)
|
return self.norm_f(hidden)
|
||||||
|
|
||||||
|
|
||||||
class Model(nn.Module):
|
class Model(nn.Module):
|
||||||
@ -259,33 +292,24 @@ class Model(nn.Module):
|
|||||||
super().__init__()
|
super().__init__()
|
||||||
self.args = args
|
self.args = args
|
||||||
self.model_type = args.model_type
|
self.model_type = args.model_type
|
||||||
|
|
||||||
self.backbone = Mamba2(args)
|
self.backbone = Mamba2(args)
|
||||||
|
|
||||||
if not args.tie_word_embeddings:
|
if not args.tie_word_embeddings:
|
||||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||||
|
|
||||||
def __call__(self, inputs: mx.array, cache=None):
|
def __call__(self, inputs: mx.array, cache=None):
|
||||||
B, T = inputs.shape
|
hidden = self.backbone(inputs, cache)
|
||||||
|
|
||||||
x = self.backbone(inputs, cache)
|
|
||||||
|
|
||||||
if self.args.tie_word_embeddings:
|
if self.args.tie_word_embeddings:
|
||||||
logits = self.backbone.embeddings.as_linear(x)
|
logits = self.backbone.embeddings.as_linear(hidden)
|
||||||
else:
|
else:
|
||||||
logits = self.lm_head(x)
|
logits = self.lm_head(hidden)
|
||||||
|
|
||||||
return logits
|
return logits
|
||||||
|
|
||||||
def make_cache(self, batch_size=1):
|
def make_cache(self):
|
||||||
return [MambaCache() for _ in range(len(self.backbone.layers))]
|
return [Mamba2Cache() for _ in range(len(self.layers))]
|
||||||
|
|
||||||
def sanitize(self, weights):
|
|
||||||
for k, v in weights.items():
|
|
||||||
if "conv1d.weight" in k and v.shape[-1] != 1:
|
|
||||||
weights[k] = v.moveaxis(2, 1)
|
|
||||||
return weights
|
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def layers(self):
|
def layers(self):
|
||||||
return self.backbone.layers
|
return self.backbone.layers
|
Loading…
Reference in New Issue
Block a user