mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-12-16 02:08:55 +08:00
Implement Wan2.2
This commit is contained in:
363
video/Wan2.2/wan/utils/qwen_vl_utils.py
Normal file
363
video/Wan2.2/wan/utils/qwen_vl_utils.py
Normal file
@@ -0,0 +1,363 @@
|
||||
# Copied from https://github.com/kq-chen/qwen-vl-utils
|
||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
||||
from __future__ import annotations
|
||||
|
||||
import base64
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import warnings
|
||||
from functools import lru_cache
|
||||
from io import BytesIO
|
||||
|
||||
import requests
|
||||
import torch
|
||||
import torchvision
|
||||
from packaging import version
|
||||
from PIL import Image
|
||||
from torchvision import io, transforms
|
||||
from torchvision.transforms import InterpolationMode
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
IMAGE_FACTOR = 28
|
||||
MIN_PIXELS = 4 * 28 * 28
|
||||
MAX_PIXELS = 16384 * 28 * 28
|
||||
MAX_RATIO = 200
|
||||
|
||||
VIDEO_MIN_PIXELS = 128 * 28 * 28
|
||||
VIDEO_MAX_PIXELS = 768 * 28 * 28
|
||||
VIDEO_TOTAL_PIXELS = 24576 * 28 * 28
|
||||
FRAME_FACTOR = 2
|
||||
FPS = 2.0
|
||||
FPS_MIN_FRAMES = 4
|
||||
FPS_MAX_FRAMES = 768
|
||||
|
||||
|
||||
def round_by_factor(number: int, factor: int) -> int:
|
||||
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
||||
return round(number / factor) * factor
|
||||
|
||||
|
||||
def ceil_by_factor(number: int, factor: int) -> int:
|
||||
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
|
||||
return math.ceil(number / factor) * factor
|
||||
|
||||
|
||||
def floor_by_factor(number: int, factor: int) -> int:
|
||||
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
|
||||
return math.floor(number / factor) * factor
|
||||
|
||||
|
||||
def smart_resize(height: int,
|
||||
width: int,
|
||||
factor: int = IMAGE_FACTOR,
|
||||
min_pixels: int = MIN_PIXELS,
|
||||
max_pixels: int = MAX_PIXELS) -> tuple[int, int]:
|
||||
"""
|
||||
Rescales the image so that the following conditions are met:
|
||||
|
||||
1. Both dimensions (height and width) are divisible by 'factor'.
|
||||
|
||||
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
||||
|
||||
3. The aspect ratio of the image is maintained as closely as possible.
|
||||
"""
|
||||
if max(height, width) / min(height, width) > MAX_RATIO:
|
||||
raise ValueError(
|
||||
f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)}"
|
||||
)
|
||||
h_bar = max(factor, round_by_factor(height, factor))
|
||||
w_bar = max(factor, round_by_factor(width, factor))
|
||||
if h_bar * w_bar > max_pixels:
|
||||
beta = math.sqrt((height * width) / max_pixels)
|
||||
h_bar = floor_by_factor(height / beta, factor)
|
||||
w_bar = floor_by_factor(width / beta, factor)
|
||||
elif h_bar * w_bar < min_pixels:
|
||||
beta = math.sqrt(min_pixels / (height * width))
|
||||
h_bar = ceil_by_factor(height * beta, factor)
|
||||
w_bar = ceil_by_factor(width * beta, factor)
|
||||
return h_bar, w_bar
|
||||
|
||||
|
||||
def fetch_image(ele: dict[str, str | Image.Image],
|
||||
size_factor: int = IMAGE_FACTOR) -> Image.Image:
|
||||
if "image" in ele:
|
||||
image = ele["image"]
|
||||
else:
|
||||
image = ele["image_url"]
|
||||
image_obj = None
|
||||
if isinstance(image, Image.Image):
|
||||
image_obj = image
|
||||
elif image.startswith("http://") or image.startswith("https://"):
|
||||
image_obj = Image.open(requests.get(image, stream=True).raw)
|
||||
elif image.startswith("file://"):
|
||||
image_obj = Image.open(image[7:])
|
||||
elif image.startswith("data:image"):
|
||||
if "base64," in image:
|
||||
_, base64_data = image.split("base64,", 1)
|
||||
data = base64.b64decode(base64_data)
|
||||
image_obj = Image.open(BytesIO(data))
|
||||
else:
|
||||
image_obj = Image.open(image)
|
||||
if image_obj is None:
|
||||
raise ValueError(
|
||||
f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}"
|
||||
)
|
||||
image = image_obj.convert("RGB")
|
||||
## resize
|
||||
if "resized_height" in ele and "resized_width" in ele:
|
||||
resized_height, resized_width = smart_resize(
|
||||
ele["resized_height"],
|
||||
ele["resized_width"],
|
||||
factor=size_factor,
|
||||
)
|
||||
else:
|
||||
width, height = image.size
|
||||
min_pixels = ele.get("min_pixels", MIN_PIXELS)
|
||||
max_pixels = ele.get("max_pixels", MAX_PIXELS)
|
||||
resized_height, resized_width = smart_resize(
|
||||
height,
|
||||
width,
|
||||
factor=size_factor,
|
||||
min_pixels=min_pixels,
|
||||
max_pixels=max_pixels,
|
||||
)
|
||||
image = image.resize((resized_width, resized_height))
|
||||
|
||||
return image
|
||||
|
||||
|
||||
def smart_nframes(
|
||||
ele: dict,
|
||||
total_frames: int,
|
||||
video_fps: int | float,
|
||||
) -> int:
|
||||
"""calculate the number of frames for video used for model inputs.
|
||||
|
||||
Args:
|
||||
ele (dict): a dict contains the configuration of video.
|
||||
support either `fps` or `nframes`:
|
||||
- nframes: the number of frames to extract for model inputs.
|
||||
- fps: the fps to extract frames for model inputs.
|
||||
- min_frames: the minimum number of frames of the video, only used when fps is provided.
|
||||
- max_frames: the maximum number of frames of the video, only used when fps is provided.
|
||||
total_frames (int): the original total number of frames of the video.
|
||||
video_fps (int | float): the original fps of the video.
|
||||
|
||||
Raises:
|
||||
ValueError: nframes should in interval [FRAME_FACTOR, total_frames].
|
||||
|
||||
Returns:
|
||||
int: the number of frames for video used for model inputs.
|
||||
"""
|
||||
assert not ("fps" in ele and
|
||||
"nframes" in ele), "Only accept either `fps` or `nframes`"
|
||||
if "nframes" in ele:
|
||||
nframes = round_by_factor(ele["nframes"], FRAME_FACTOR)
|
||||
else:
|
||||
fps = ele.get("fps", FPS)
|
||||
min_frames = ceil_by_factor(
|
||||
ele.get("min_frames", FPS_MIN_FRAMES), FRAME_FACTOR)
|
||||
max_frames = floor_by_factor(
|
||||
ele.get("max_frames", min(FPS_MAX_FRAMES, total_frames)),
|
||||
FRAME_FACTOR)
|
||||
nframes = total_frames / video_fps * fps
|
||||
nframes = min(max(nframes, min_frames), max_frames)
|
||||
nframes = round_by_factor(nframes, FRAME_FACTOR)
|
||||
if not (FRAME_FACTOR <= nframes and nframes <= total_frames):
|
||||
raise ValueError(
|
||||
f"nframes should in interval [{FRAME_FACTOR}, {total_frames}], but got {nframes}."
|
||||
)
|
||||
return nframes
|
||||
|
||||
|
||||
def _read_video_torchvision(ele: dict,) -> torch.Tensor:
|
||||
"""read video using torchvision.io.read_video
|
||||
|
||||
Args:
|
||||
ele (dict): a dict contains the configuration of video.
|
||||
support keys:
|
||||
- video: the path of video. support "file://", "http://", "https://" and local path.
|
||||
- video_start: the start time of video.
|
||||
- video_end: the end time of video.
|
||||
Returns:
|
||||
torch.Tensor: the video tensor with shape (T, C, H, W).
|
||||
"""
|
||||
video_path = ele["video"]
|
||||
if version.parse(torchvision.__version__) < version.parse("0.19.0"):
|
||||
if "http://" in video_path or "https://" in video_path:
|
||||
warnings.warn(
|
||||
"torchvision < 0.19.0 does not support http/https video path, please upgrade to 0.19.0."
|
||||
)
|
||||
if "file://" in video_path:
|
||||
video_path = video_path[7:]
|
||||
st = time.time()
|
||||
video, audio, info = io.read_video(
|
||||
video_path,
|
||||
start_pts=ele.get("video_start", 0.0),
|
||||
end_pts=ele.get("video_end", None),
|
||||
pts_unit="sec",
|
||||
output_format="TCHW",
|
||||
)
|
||||
total_frames, video_fps = video.size(0), info["video_fps"]
|
||||
logger.info(
|
||||
f"torchvision: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s"
|
||||
)
|
||||
nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps)
|
||||
idx = torch.linspace(0, total_frames - 1, nframes).round().long()
|
||||
video = video[idx]
|
||||
return video
|
||||
|
||||
|
||||
def is_decord_available() -> bool:
|
||||
import importlib.util
|
||||
|
||||
return importlib.util.find_spec("decord") is not None
|
||||
|
||||
|
||||
def _read_video_decord(ele: dict,) -> torch.Tensor:
|
||||
"""read video using decord.VideoReader
|
||||
|
||||
Args:
|
||||
ele (dict): a dict contains the configuration of video.
|
||||
support keys:
|
||||
- video: the path of video. support "file://", "http://", "https://" and local path.
|
||||
- video_start: the start time of video.
|
||||
- video_end: the end time of video.
|
||||
Returns:
|
||||
torch.Tensor: the video tensor with shape (T, C, H, W).
|
||||
"""
|
||||
import decord
|
||||
video_path = ele["video"]
|
||||
st = time.time()
|
||||
vr = decord.VideoReader(video_path)
|
||||
# TODO: support start_pts and end_pts
|
||||
if 'video_start' in ele or 'video_end' in ele:
|
||||
raise NotImplementedError(
|
||||
"not support start_pts and end_pts in decord for now.")
|
||||
total_frames, video_fps = len(vr), vr.get_avg_fps()
|
||||
logger.info(
|
||||
f"decord: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s"
|
||||
)
|
||||
nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps)
|
||||
idx = torch.linspace(0, total_frames - 1, nframes).round().long().tolist()
|
||||
video = vr.get_batch(idx).asnumpy()
|
||||
video = torch.tensor(video).permute(0, 3, 1, 2) # Convert to TCHW format
|
||||
return video
|
||||
|
||||
|
||||
VIDEO_READER_BACKENDS = {
|
||||
"decord": _read_video_decord,
|
||||
"torchvision": _read_video_torchvision,
|
||||
}
|
||||
|
||||
FORCE_QWENVL_VIDEO_READER = os.getenv("FORCE_QWENVL_VIDEO_READER", None)
|
||||
|
||||
|
||||
@lru_cache(maxsize=1)
|
||||
def get_video_reader_backend() -> str:
|
||||
if FORCE_QWENVL_VIDEO_READER is not None:
|
||||
video_reader_backend = FORCE_QWENVL_VIDEO_READER
|
||||
elif is_decord_available():
|
||||
video_reader_backend = "decord"
|
||||
else:
|
||||
video_reader_backend = "torchvision"
|
||||
logger.info(
|
||||
f"qwen-vl-utils using {video_reader_backend} to read video.",
|
||||
file=sys.stderr)
|
||||
return video_reader_backend
|
||||
|
||||
|
||||
def fetch_video(
|
||||
ele: dict,
|
||||
image_factor: int = IMAGE_FACTOR) -> torch.Tensor | list[Image.Image]:
|
||||
if isinstance(ele["video"], str):
|
||||
video_reader_backend = get_video_reader_backend()
|
||||
video = VIDEO_READER_BACKENDS[video_reader_backend](ele)
|
||||
nframes, _, height, width = video.shape
|
||||
|
||||
min_pixels = ele.get("min_pixels", VIDEO_MIN_PIXELS)
|
||||
total_pixels = ele.get("total_pixels", VIDEO_TOTAL_PIXELS)
|
||||
max_pixels = max(
|
||||
min(VIDEO_MAX_PIXELS, total_pixels / nframes * FRAME_FACTOR),
|
||||
int(min_pixels * 1.05))
|
||||
max_pixels = ele.get("max_pixels", max_pixels)
|
||||
if "resized_height" in ele and "resized_width" in ele:
|
||||
resized_height, resized_width = smart_resize(
|
||||
ele["resized_height"],
|
||||
ele["resized_width"],
|
||||
factor=image_factor,
|
||||
)
|
||||
else:
|
||||
resized_height, resized_width = smart_resize(
|
||||
height,
|
||||
width,
|
||||
factor=image_factor,
|
||||
min_pixels=min_pixels,
|
||||
max_pixels=max_pixels,
|
||||
)
|
||||
video = transforms.functional.resize(
|
||||
video,
|
||||
[resized_height, resized_width],
|
||||
interpolation=InterpolationMode.BICUBIC,
|
||||
antialias=True,
|
||||
).float()
|
||||
return video
|
||||
else:
|
||||
assert isinstance(ele["video"], (list, tuple))
|
||||
process_info = ele.copy()
|
||||
process_info.pop("type", None)
|
||||
process_info.pop("video", None)
|
||||
images = [
|
||||
fetch_image({
|
||||
"image": video_element,
|
||||
**process_info
|
||||
},
|
||||
size_factor=image_factor)
|
||||
for video_element in ele["video"]
|
||||
]
|
||||
nframes = ceil_by_factor(len(images), FRAME_FACTOR)
|
||||
if len(images) < nframes:
|
||||
images.extend([images[-1]] * (nframes - len(images)))
|
||||
return images
|
||||
|
||||
|
||||
def extract_vision_info(
|
||||
conversations: list[dict] | list[list[dict]]) -> list[dict]:
|
||||
vision_infos = []
|
||||
if isinstance(conversations[0], dict):
|
||||
conversations = [conversations]
|
||||
for conversation in conversations:
|
||||
for message in conversation:
|
||||
if isinstance(message["content"], list):
|
||||
for ele in message["content"]:
|
||||
if ("image" in ele or "image_url" in ele or
|
||||
"video" in ele or
|
||||
ele["type"] in ("image", "image_url", "video")):
|
||||
vision_infos.append(ele)
|
||||
return vision_infos
|
||||
|
||||
|
||||
def process_vision_info(
|
||||
conversations: list[dict] | list[list[dict]],
|
||||
) -> tuple[list[Image.Image] | None, list[torch.Tensor | list[Image.Image]] |
|
||||
None]:
|
||||
vision_infos = extract_vision_info(conversations)
|
||||
## Read images or videos
|
||||
image_inputs = []
|
||||
video_inputs = []
|
||||
for vision_info in vision_infos:
|
||||
if "image" in vision_info or "image_url" in vision_info:
|
||||
image_inputs.append(fetch_image(vision_info))
|
||||
elif "video" in vision_info:
|
||||
video_inputs.append(fetch_video(vision_info))
|
||||
else:
|
||||
raise ValueError("image, image_url or video should in content.")
|
||||
if len(image_inputs) == 0:
|
||||
image_inputs = None
|
||||
if len(video_inputs) == 0:
|
||||
video_inputs = None
|
||||
return image_inputs, video_inputs
|
||||
Reference in New Issue
Block a user