mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00
Quantize example (#162)
* testing quantization * conversion + quantization working * one config processor * quantization in mistral / nits in llama * args for quantization * llama / mistral conversion in good shape * phi2 quantized * mixtral * qwen conversion
This commit is contained in:
parent
4c9db80ed2
commit
3cf436b529
@ -30,24 +30,32 @@ Face](https://huggingface.co/TinyLlama).
|
||||
Convert the weights with:
|
||||
|
||||
```
|
||||
python convert.py --model-path <path_to_torch_model>
|
||||
python convert.py --torch-path <path_to_torch_model>
|
||||
```
|
||||
|
||||
To generate a 4-bit quantized model use the `-q` flag:
|
||||
|
||||
```
|
||||
python convert.py --torch-path <path_to_torch_model> -q
|
||||
```
|
||||
|
||||
For TinyLlama use
|
||||
|
||||
```
|
||||
python convert.py --model-path <path_to_torch_model> --model-name tiny_llama
|
||||
python convert.py --torch-path <path_to_torch_model> --model-name tiny_llama
|
||||
```
|
||||
|
||||
The conversion script will save the converted weights in the same location.
|
||||
By default, the conversion script will make the directory `mlx_model` and save
|
||||
the converted `weights.npz`, `tokenizer.model`, and `config.json` there.
|
||||
|
||||
|
||||
### Run
|
||||
|
||||
Once you've converted the weights to MLX format, you can interact with the
|
||||
LlaMA model:
|
||||
LlamA model:
|
||||
|
||||
```
|
||||
python llama.py <path_to_model> <path_to_tokenizer.model> --prompt "hello"
|
||||
python llama.py --prompt "hello"
|
||||
```
|
||||
|
||||
Run `python llama.py --help` for more details.
|
||||
|
@ -2,12 +2,18 @@
|
||||
|
||||
import argparse
|
||||
import collections
|
||||
import copy
|
||||
import glob
|
||||
import json
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
import torch
|
||||
from llama import Llama, ModelArgs, sanitize_config
|
||||
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
||||
|
||||
|
||||
def llama(model_path):
|
||||
@ -57,9 +63,7 @@ def tiny_llama(model_path):
|
||||
except ImportError as e:
|
||||
print("The transformers package must be installed for this model conversion:")
|
||||
print("pip install transformers")
|
||||
import sys
|
||||
|
||||
sys.exit(0)
|
||||
exit(0)
|
||||
|
||||
model = transformers.AutoModelForCausalLM.from_pretrained(
|
||||
str(model_path)
|
||||
@ -114,11 +118,40 @@ def tiny_llama(model_path):
|
||||
return weights, params
|
||||
|
||||
|
||||
def quantize(weights, config, args):
|
||||
quantized_config = copy.deepcopy(config)
|
||||
|
||||
# Load the model:
|
||||
config = sanitize_config(config, weights)
|
||||
model = Llama(ModelArgs(**config))
|
||||
weights = tree_map(mx.array, weights)
|
||||
model.update(tree_unflatten(list(weights.items())))
|
||||
|
||||
# Quantize the model:
|
||||
nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
|
||||
|
||||
# Update the config:
|
||||
quantized_config["quantization"] = {
|
||||
"group_size": args.q_group_size,
|
||||
"bits": args.q_bits,
|
||||
}
|
||||
quantized_weights = dict(tree_flatten(model.parameters()))
|
||||
|
||||
return quantized_weights, quantized_config
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Convert Llama weights to MLX")
|
||||
parser.add_argument(
|
||||
"--model-path",
|
||||
help="Path to the model. The MLX weights will also be saved there.",
|
||||
"--torch-path",
|
||||
type=str,
|
||||
help="Path to the PyTorch model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mlx-path",
|
||||
type=str,
|
||||
default="mlx_model",
|
||||
help="Path to save the MLX model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model-name",
|
||||
@ -130,12 +163,43 @@ if __name__ == "__main__":
|
||||
choices=["tiny_llama", "llama"],
|
||||
default="llama",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-q",
|
||||
"--quantize",
|
||||
help="Generate a quantized model.",
|
||||
action="store_true",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--q_group_size",
|
||||
help="Group size for quantization.",
|
||||
type=int,
|
||||
default=64,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--q_bits",
|
||||
help="Bits per weight for quantization.",
|
||||
type=int,
|
||||
default=4,
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
model_path = Path(args.model_path)
|
||||
weights, params = globals()[args.model_name](model_path)
|
||||
torch_path = Path(args.torch_path)
|
||||
mlx_path = Path(args.mlx_path)
|
||||
mlx_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
print("[INFO] Loading")
|
||||
weights, params = globals()[args.model_name](torch_path)
|
||||
params["model_type"] = "llama"
|
||||
np.savez(str(model_path / "weights.npz"), **weights)
|
||||
with open(model_path / "config.json", "w") as fid:
|
||||
if args.quantize:
|
||||
print("[INFO] Quantizing")
|
||||
weights, params = quantize(weights, params, args)
|
||||
|
||||
print("[INFO] Saving")
|
||||
shutil.copyfile(
|
||||
str(torch_path / "tokenizer.model"),
|
||||
str(mlx_path / "tokenizer.model"),
|
||||
)
|
||||
np.savez(str(mlx_path / "weights.npz"), **weights)
|
||||
with open(mlx_path / "config.json", "w") as fid:
|
||||
json.dump(params, fid, indent=4)
|
||||
|
@ -178,6 +178,12 @@ class Llama(nn.Module):
|
||||
return self.output(x)
|
||||
|
||||
def generate(self, x, temp=1.0):
|
||||
def sample(logits):
|
||||
if temp == 0:
|
||||
return mx.argmax(logits, axis=-1)
|
||||
else:
|
||||
return mx.random.categorical(logits * (1 / temp))
|
||||
|
||||
cache = []
|
||||
|
||||
# Make an additive causal mask. We will need that to process the prompt.
|
||||
@ -194,7 +200,7 @@ class Llama(nn.Module):
|
||||
x = self.norm(x)
|
||||
# We only care about the last logits that generate the next token
|
||||
y = self.output(x[:, -1])
|
||||
y = mx.random.categorical(y * (1 / temp))
|
||||
y = sample(y)
|
||||
|
||||
# y now has size [1]
|
||||
# Since MLX is lazily evaluated nothing is computed yet.
|
||||
@ -218,8 +224,7 @@ class Llama(nn.Module):
|
||||
# old cache the moment it is not needed anymore.
|
||||
x, cache[i] = self.layers[i](x, mask=None, cache=cache[i])
|
||||
x = self.norm(x)
|
||||
y = self.output(x[:, -1])
|
||||
y = mx.random.categorical(y * (1 / temp))
|
||||
y = sample(self.output(x[:, -1]))
|
||||
|
||||
yield y
|
||||
|
||||
@ -326,38 +331,46 @@ def few_shot_generate(args):
|
||||
print()
|
||||
|
||||
|
||||
def sanitize_config(config, weights):
|
||||
config.pop("model_type", None)
|
||||
n_heads = config["n_heads"]
|
||||
if "n_kv_heads" not in config:
|
||||
config["n_kv_heads"] = n_heads
|
||||
if "head_dim" not in config:
|
||||
config["head_dim"] = config["dim"] // n_heads
|
||||
if "hidden_dim" not in config:
|
||||
config["hidden_dim"] = weights["layers.0.feed_forward.w1.weight"].shape[0]
|
||||
if config.get("vocab_size", -1) < 0:
|
||||
config["vocab_size"] = weights["output.weight"].shape[-1]
|
||||
if "rope_theta" not in config:
|
||||
config["rope_theta"] = 10000
|
||||
unused = ["multiple_of", "ffn_dim_multiplier"]
|
||||
for k in unused:
|
||||
config.pop(k, None)
|
||||
return config
|
||||
|
||||
|
||||
def load_model(model_path):
|
||||
model_path = Path(model_path)
|
||||
weights = mx.load(str(model_path / "weights.npz"))
|
||||
with open(model_path / "config.json", "r") as f:
|
||||
config = json.loads(f.read())
|
||||
config.pop("model_type", None)
|
||||
n_heads = config["n_heads"]
|
||||
if "n_kv_heads" not in config:
|
||||
config["n_kv_heads"] = n_heads
|
||||
if "head_dim" not in config:
|
||||
config["head_dim"] = config["dim"] // n_heads
|
||||
if "hidden_dim" not in config:
|
||||
config["hidden_dim"] = weights["layers.0.feed_forward.w1.weight"].shape[0]
|
||||
if config.get("vocab_size", -1) < 0:
|
||||
config["vocab_size"] = weights["output.weight"].shape[-1]
|
||||
if "rope_theta" not in config:
|
||||
config["rope_theta"] = 10000
|
||||
unused = ["multiple_of", "ffn_dim_multiplier"]
|
||||
for k in unused:
|
||||
if k in config:
|
||||
config.pop(k)
|
||||
config = sanitize_config(json.loads(f.read()), weights)
|
||||
quantization = config.pop("quantization", None)
|
||||
model = Llama(ModelArgs(**config))
|
||||
if quantization is not None:
|
||||
nn.QuantizedLinear.quantize_module(model, **quantization)
|
||||
model.update(tree_unflatten(list(weights.items())))
|
||||
return model
|
||||
tokenizer = SentencePieceProcessor(model_file=str(model_path / "tokenizer.model"))
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Llama inference script")
|
||||
parser.add_argument(
|
||||
"model", help="Path to the model directory containing the MLX weights"
|
||||
"--model-path",
|
||||
help="Path to the model directory containing the MLX weights",
|
||||
default="mlx_model",
|
||||
)
|
||||
parser.add_argument("tokenizer", help="The sentencepiece tokenizer")
|
||||
parser.add_argument(
|
||||
"--prompt",
|
||||
help="The message to be processed by the model. Ignored when --few-shot is provided.",
|
||||
@ -374,7 +387,7 @@ if __name__ == "__main__":
|
||||
"--write-every", type=int, default=1, help="After how many tokens to detokenize"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--temp", type=float, default=0.8, help="The sampling temperature"
|
||||
"--temp", type=float, default=0.0, help="The sampling temperature"
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
|
||||
|
||||
@ -382,9 +395,8 @@ if __name__ == "__main__":
|
||||
|
||||
mx.random.seed(args.seed)
|
||||
|
||||
tokenizer = SentencePieceProcessor(model_file=args.tokenizer)
|
||||
print("[INFO] Loading model from disk.")
|
||||
model = load_model(args.model)
|
||||
model, tokenizer = load_model(args.model_path)
|
||||
if args.few_shot:
|
||||
few_shot_generate(args)
|
||||
else:
|
||||
|
@ -23,10 +23,17 @@ tar -xf mistral-7B-v0.1.tar
|
||||
Then, convert the weights with:
|
||||
|
||||
```
|
||||
python convert.py
|
||||
python convert.py --torch-path <path_to_torch>
|
||||
```
|
||||
|
||||
The conversion script will save the converted weights in the same location.
|
||||
To generate a 4-bit quantized model, use ``-q``. For a full list of options:
|
||||
|
||||
```
|
||||
python convert.py --help
|
||||
```
|
||||
|
||||
By default, the conversion script will make the directory `mlx_model` and save
|
||||
the converted `weights.npz`, `tokenizer.model`, and `config.json` there.
|
||||
|
||||
> [!TIP]
|
||||
> Alternatively, you can also download a few converted checkpoints from the
|
||||
@ -40,7 +47,7 @@ Once you've converted the weights to MLX format, you can generate text with
|
||||
the Mistral model:
|
||||
|
||||
```
|
||||
python mistral.py --prompt "It is a truth universally acknowledged," --temp 0
|
||||
python mistral.py --prompt "It is a truth universally acknowledged,"
|
||||
```
|
||||
|
||||
Run `python mistral.py --help` for more details.
|
||||
|
@ -1,32 +1,98 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
import json
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
import torch
|
||||
from mistral import Mistral, ModelArgs
|
||||
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
||||
|
||||
|
||||
def quantize(weights, config, args):
|
||||
quantized_config = copy.deepcopy(config)
|
||||
|
||||
# Load the model:
|
||||
config.pop("sliding_window", None)
|
||||
model = Mistral(ModelArgs(**config))
|
||||
weights = tree_map(mx.array, weights)
|
||||
model.update(tree_unflatten(list(weights.items())))
|
||||
|
||||
# Quantize the model:
|
||||
nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
|
||||
|
||||
# Update the config:
|
||||
quantized_config["quantization"] = {
|
||||
"group_size": args.q_group_size,
|
||||
"bits": args.q_bits,
|
||||
}
|
||||
quantized_weights = dict(tree_flatten(model.parameters()))
|
||||
|
||||
return quantized_weights, quantized_config
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Convert Mistral weights to MLX.")
|
||||
parser.add_argument(
|
||||
"--model-path",
|
||||
"--torch-path",
|
||||
type=str,
|
||||
default="mistral-7B-v0.1/",
|
||||
help="The path to the Mistral model. The MLX weights will also be saved there.",
|
||||
default="mistral-7B-v0.1",
|
||||
help="The path to the PyTorch model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mlx-path",
|
||||
type=str,
|
||||
default="mlx_model",
|
||||
help="The path to save the MLX model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-q",
|
||||
"--quantize",
|
||||
help="Generate a quantized model.",
|
||||
action="store_true",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--q_group_size",
|
||||
help="Group size for quantization.",
|
||||
type=int,
|
||||
default=64,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--q_bits",
|
||||
help="Bits per weight for quantization.",
|
||||
type=int,
|
||||
default=4,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
model_path = Path(args.model_path)
|
||||
state = torch.load(str(model_path / "consolidated.00.pth"))
|
||||
np.savez(
|
||||
str(model_path / "weights.npz"),
|
||||
**{k: v.to(torch.float16).numpy() for k, v in state.items()}
|
||||
torch_path = Path(args.torch_path)
|
||||
state = torch.load(str(torch_path / "consolidated.00.pth"))
|
||||
mlx_path = Path(args.mlx_path)
|
||||
mlx_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
weights = {k: v.to(torch.float16).numpy() for k, v in state.items()}
|
||||
with open(torch_path / "params.json", "r") as f:
|
||||
config = json.loads(f.read())
|
||||
|
||||
if args.quantize:
|
||||
print("[INFO] Quantizing")
|
||||
weights, config = quantize(weights, config, args)
|
||||
|
||||
# Save weights
|
||||
np.savez(str(mlx_path / "weights.npz"), **weights)
|
||||
|
||||
# Copy tokenizer
|
||||
shutil.copyfile(
|
||||
str(torch_path / "tokenizer.model"),
|
||||
str(mlx_path / "tokenizer.model"),
|
||||
)
|
||||
|
||||
# Save config.json with model_type
|
||||
with open(model_path / "params.json", "r") as f:
|
||||
config = json.loads(f.read())
|
||||
with open(mlx_path / "config.json", "w") as f:
|
||||
config["model_type"] = "mistral"
|
||||
with open(model_path / "config.json", "w") as f:
|
||||
json.dump(config, f, indent=4)
|
||||
|
@ -8,7 +8,7 @@ from typing import List, Optional, Tuple
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from mlx.utils import tree_map, tree_unflatten
|
||||
from mlx.utils import tree_unflatten
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
|
||||
|
||||
@ -189,18 +189,20 @@ class Tokenizer:
|
||||
return out
|
||||
|
||||
|
||||
def load_model(folder: str, dtype=mx.float16):
|
||||
def load_model(folder: str):
|
||||
model_path = Path(folder)
|
||||
tokenizer = Tokenizer(str(model_path / "tokenizer.model"))
|
||||
with open(model_path / "config.json", "r") as f:
|
||||
config = json.loads(f.read())
|
||||
config.pop("sliding_window", None)
|
||||
config.pop("model_type", None)
|
||||
quantization = config.pop("quantization", None)
|
||||
model_args = ModelArgs(**config)
|
||||
weights = mx.load(str(model_path / "weights.npz"))
|
||||
weights = tree_unflatten(list(weights.items()))
|
||||
weights = tree_map(lambda p: p.astype(dtype), weights)
|
||||
model = Mistral(model_args)
|
||||
if quantization is not None:
|
||||
nn.QuantizedLinear.quantize_module(model, **quantization)
|
||||
model.update(weights)
|
||||
return model, tokenizer
|
||||
|
||||
@ -227,7 +229,7 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--model-path",
|
||||
type=str,
|
||||
default="mistral-7B-v0.1",
|
||||
default="mlx_model",
|
||||
help="The path to the model weights and tokenizer",
|
||||
)
|
||||
parser.add_argument(
|
||||
@ -236,7 +238,7 @@ if __name__ == "__main__":
|
||||
default="In the beginning the Universe was created.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max_tokens",
|
||||
"--max-tokens",
|
||||
"-m",
|
||||
type=int,
|
||||
default=100,
|
||||
@ -246,7 +248,7 @@ if __name__ == "__main__":
|
||||
"--temp",
|
||||
help="The sampling temperature.",
|
||||
type=float,
|
||||
default=1.0,
|
||||
default=0.0,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tokens_per_eval",
|
||||
|
@ -43,10 +43,18 @@ Now from `mlx-exmaples/mixtral` convert and save the weights as NumPy arrays so
|
||||
MLX can read them:
|
||||
|
||||
```
|
||||
python convert.py --model-path $MIXTRAL_MODEL/
|
||||
python convert.py --torch-path $MIXTRAL_MODEL/
|
||||
```
|
||||
|
||||
The conversion script will save the converted weights in the same location.
|
||||
To generate a 4-bit quantized model, use ``-q``. For a full list of options:
|
||||
|
||||
```
|
||||
python convert.py --help
|
||||
```
|
||||
|
||||
By default, the conversion script will make the directory `mlx_model` and save
|
||||
the converted `weights.npz`, `tokenizer.model`, and `config.json` there.
|
||||
|
||||
|
||||
### Generate
|
||||
|
||||
|
@ -1,59 +1,152 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
import glob
|
||||
import json
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
import torch
|
||||
from mixtral import Mixtral, ModelArgs
|
||||
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
||||
|
||||
|
||||
def convert(k, v, config):
|
||||
v = v.to(torch.float16).numpy()
|
||||
if "block_sparse_moe" not in k:
|
||||
return [(k, v)]
|
||||
if "gate" in k:
|
||||
return [(k.replace("block_sparse_moe", "feed_forward"), v)]
|
||||
def convert(weights, config):
|
||||
def convert_single(k, v):
|
||||
v = v.to(torch.float16).numpy()
|
||||
if "block_sparse_moe" not in k:
|
||||
return [(k, v)]
|
||||
if "gate" in k:
|
||||
return [(k.replace("block_sparse_moe", "feed_forward"), v)]
|
||||
|
||||
# From: layers.N.block_sparse_moe.w
|
||||
# To: layers.N.experts.M.w
|
||||
num_experts = args["moe"]["num_experts"]
|
||||
key_path = k.split(".")
|
||||
v = np.split(v, num_experts, axis=0)
|
||||
if key_path[-1] == "w2":
|
||||
v = [u.T for u in v]
|
||||
# From: layers.N.block_sparse_moe.w
|
||||
# To: layers.N.experts.M.w
|
||||
num_experts = config["moe"]["num_experts"]
|
||||
key_path = k.split(".")
|
||||
v = np.split(v, num_experts, axis=0)
|
||||
if key_path[-1] == "w2":
|
||||
v = [u.T for u in v]
|
||||
|
||||
w_name = key_path.pop()
|
||||
key_path[-1] = "feed_forward.experts"
|
||||
return [
|
||||
(".".join(key_path + [str(e), w_name, "weight"]), u) for e, u in enumerate(v)
|
||||
]
|
||||
w_name = key_path.pop()
|
||||
key_path[-1] = "feed_forward.experts"
|
||||
return [
|
||||
(".".join(key_path + [str(e), w_name, "weight"]), u)
|
||||
for e, u in enumerate(v)
|
||||
]
|
||||
|
||||
state = torch.load(tf)
|
||||
weights = {}
|
||||
for k, v in state.items():
|
||||
weights.update(convert_single(k, v))
|
||||
return weights
|
||||
|
||||
|
||||
def quantize(weights, config, args):
|
||||
quantized_config = copy.deepcopy(config)
|
||||
|
||||
# Load the model and update with the subset of weights:
|
||||
config.pop("quantization", None)
|
||||
model = Mixtral(ModelArgs(**config))
|
||||
all_weights = dict(tree_flatten(model.parameters()))
|
||||
|
||||
weights = tree_map(mx.array, weights)
|
||||
|
||||
all_weights.update(weights)
|
||||
all_weights = tree_unflatten(list(all_weights.items()))
|
||||
model.update(all_weights)
|
||||
|
||||
# Quantize the model:
|
||||
nn.QuantizedLinear.quantize_module(
|
||||
model,
|
||||
args.q_group_size,
|
||||
args.q_bits,
|
||||
# TODO: Quantize gate matrices when < 32 tiles supported
|
||||
linear_class_predicate=lambda m: isinstance(m, nn.Linear)
|
||||
and m.weight.shape[0] != 8,
|
||||
)
|
||||
|
||||
# Extract the subset of quantized weights:
|
||||
all_weights = dict(tree_flatten(model.parameters()))
|
||||
quantized_weights = {}
|
||||
for k, v in all_weights.items():
|
||||
if k not in weights:
|
||||
continue
|
||||
quantized_weights[k] = v
|
||||
prefix = k.split(".")[:-1]
|
||||
for qw in ["scales", "biases"]:
|
||||
if (k := ".".join(prefix + [qw])) in all_weights:
|
||||
quantized_weights[k] = all_weights[k]
|
||||
|
||||
# Update the config:
|
||||
quantized_config["quantization"] = {
|
||||
"group_size": args.q_group_size,
|
||||
"bits": args.q_bits,
|
||||
}
|
||||
return quantized_weights, quantized_config
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Convert Mixtral weights to MLX.")
|
||||
parser.add_argument(
|
||||
"--model-path",
|
||||
"--torch-path",
|
||||
type=str,
|
||||
default="Mixtral-8x7B-v0.1/",
|
||||
help="The path to the Mixtral model. The MLX model weights will also be saved there.",
|
||||
default="Mixtral-8x7B-v0.1",
|
||||
help="The path to the PyTorch model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mlx-path",
|
||||
type=str,
|
||||
default="mlx_model",
|
||||
help="The path to save the MLX model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-q",
|
||||
"--quantize",
|
||||
help="Generate a quantized model.",
|
||||
action="store_true",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--q_group_size",
|
||||
help="Group size for quantization.",
|
||||
type=int,
|
||||
default=64,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--q_bits",
|
||||
help="Bits per weight for quantization.",
|
||||
type=int,
|
||||
default=4,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
model_path = Path(args.model_path)
|
||||
torch_path = Path(args.torch_path)
|
||||
mlx_path = Path(args.mlx_path)
|
||||
mlx_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
with open("params.json") as fid:
|
||||
args = json.load(fid)
|
||||
args["model_type"] = "mixtral"
|
||||
with open(model_path / "config.json", "w") as f:
|
||||
json.dump(args, f, indent=4)
|
||||
config = json.load(fid)
|
||||
|
||||
torch_files = glob.glob(str(model_path / "consolidated.*.pt"))
|
||||
# Copy tokenizer
|
||||
shutil.copyfile(
|
||||
str(torch_path / "tokenizer.model"),
|
||||
str(mlx_path / "tokenizer.model"),
|
||||
)
|
||||
|
||||
# Convert and save model in shards
|
||||
torch_files = glob.glob(str(torch_path / "consolidated.*.pt"))
|
||||
torch_files = sorted(torch_files, key=lambda tf: int(tf.split(".")[-2]))
|
||||
for e, tf in enumerate(torch_files):
|
||||
print(f"[INFO] Converting file {e + 1}/{len(torch_files)}")
|
||||
state = torch.load(tf)
|
||||
new_state = {}
|
||||
for k, v in state.items():
|
||||
new_state.update(convert(k, v, args))
|
||||
np.savez(str(model_path / f"weights.{e}.npz"), **new_state)
|
||||
weights = convert(tf, config)
|
||||
if args.quantize:
|
||||
print("[INFO] Quantizing")
|
||||
weights, config = quantize(weights, config, args)
|
||||
np.savez(str(mlx_path / f"weights.{e}.npz"), **weights)
|
||||
|
||||
# Save updated config
|
||||
with open(mlx_path / "config.json", "w") as f:
|
||||
config["model_type"] = "mixtral"
|
||||
json.dump(config, f, indent=4)
|
||||
|
@ -244,20 +244,27 @@ class Tokenizer:
|
||||
return out
|
||||
|
||||
|
||||
def load_model(folder: str, dtype=mx.float16):
|
||||
def load_model(folder: str):
|
||||
model_path = Path(folder)
|
||||
tokenizer = Tokenizer(str(model_path / "tokenizer.model"))
|
||||
with open(model_path / "config.json", "r") as f:
|
||||
config = json.loads(f.read())
|
||||
config.pop("model_type", None)
|
||||
quantization = config.pop("quantization", None)
|
||||
model_args = ModelArgs(**config)
|
||||
weight_files = glob.glob(str(model_path / "weights.*.npz"))
|
||||
weights = {}
|
||||
for wf in weight_files:
|
||||
weights.update(mx.load(wf).items())
|
||||
weights = tree_unflatten(list(weights.items()))
|
||||
weights = tree_map(lambda p: p.astype(dtype), weights)
|
||||
model = Mixtral(model_args)
|
||||
if quantization is not None:
|
||||
# TODO: Quantize gate matrices when < 32 tiles supported
|
||||
quantization["linear_class_predicate"] = (
|
||||
lambda m: isinstance(m, nn.Linear) and m.weight.shape[0] != 8
|
||||
)
|
||||
nn.QuantizedLinear.quantize_module(model, **quantization)
|
||||
|
||||
model.update(weights)
|
||||
return model, tokenizer
|
||||
|
||||
@ -284,7 +291,7 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--model-path",
|
||||
type=str,
|
||||
default="Mixtral-8x7B-v0.1",
|
||||
default="mlx_model",
|
||||
help="The path to the model weights, tokenizer, and config",
|
||||
)
|
||||
parser.add_argument(
|
||||
|
1
llms/phi2/.gitignore
vendored
1
llms/phi2/.gitignore
vendored
@ -1 +0,0 @@
|
||||
weights.npz
|
@ -15,7 +15,14 @@ Download and convert the model:
|
||||
python convert.py
|
||||
```
|
||||
|
||||
This will make the `weights.npz` file which MLX can read.
|
||||
To generate a 4-bit quantized model use the `-q` flag:
|
||||
|
||||
```
|
||||
python convert.py -q
|
||||
```
|
||||
|
||||
By default, the conversion script will make the directory `mlx_model` and save
|
||||
the converted `weights.npz`, and `config.json` there.
|
||||
|
||||
> [!TIP] Alternatively, you can also download a few converted checkpoints from
|
||||
> the [MLX Community](https://huggingface.co/mlx-community) organization on
|
||||
|
@ -1,7 +1,37 @@
|
||||
import argparse
|
||||
import copy
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
||||
from phi2 import ModelArgs, Phi2
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
|
||||
def quantize(weights, config, args):
|
||||
quantized_config = copy.deepcopy(config)
|
||||
|
||||
# Load the model:
|
||||
model = Phi2(ModelArgs())
|
||||
weights = tree_map(mx.array, weights)
|
||||
model.update(tree_unflatten(list(weights.items())))
|
||||
|
||||
# Quantize the model:
|
||||
nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
|
||||
|
||||
# Update the config:
|
||||
quantized_config["quantization"] = {
|
||||
"group_size": args.q_group_size,
|
||||
"bits": args.q_bits,
|
||||
}
|
||||
quantized_weights = dict(tree_flatten(model.parameters()))
|
||||
|
||||
return quantized_weights, quantized_config
|
||||
|
||||
|
||||
def replace_key(key: str) -> str:
|
||||
if "wte.weight" in key:
|
||||
key = "wte.weight"
|
||||
@ -12,12 +42,50 @@ def replace_key(key: str) -> str:
|
||||
|
||||
|
||||
def convert():
|
||||
parser = argparse.ArgumentParser(description="Convert Phi-2 weights to MLX")
|
||||
parser.add_argument(
|
||||
"--mlx-path",
|
||||
type=str,
|
||||
default="mlx_model",
|
||||
help="The path to save the MLX model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-q",
|
||||
"--quantize",
|
||||
help="Generate a quantized model.",
|
||||
action="store_true",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--q_group_size",
|
||||
help="Group size for quantization.",
|
||||
type=int,
|
||||
default=64,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--q_bits",
|
||||
help="Bits per weight for quantization.",
|
||||
type=int,
|
||||
default=4,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
mlx_path = Path(args.mlx_path)
|
||||
mlx_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"microsoft/phi-2", torch_dtype="auto", trust_remote_code=True
|
||||
)
|
||||
state_dict = model.state_dict()
|
||||
weights = {replace_key(k): v.numpy() for k, v in state_dict.items()}
|
||||
np.savez("weights.npz", **weights)
|
||||
params = {}
|
||||
if args.quantize:
|
||||
print("[INFO] Quantizing")
|
||||
weights, params = quantize(weights, params, args)
|
||||
|
||||
np.savez(str(mlx_path / "weights.npz"), **weights)
|
||||
with open(mlx_path / "config.json", "w") as fid:
|
||||
params["model_type"] = "phi2"
|
||||
json.dump(params, fid, indent=4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -1,4 +1,5 @@
|
||||
import argparse
|
||||
import json
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
@ -158,8 +159,16 @@ def generate(prompt: mx.array, model: Phi2, temp: Optional[float] = 0.0):
|
||||
def load_model(model_path: str):
|
||||
model = Phi2(ModelArgs())
|
||||
model_path = Path(model_path)
|
||||
with open(model_path / "config.json", "r") as f:
|
||||
config = json.loads(f.read())
|
||||
config.pop("model_type", None)
|
||||
quantization = config.pop("quantization", None)
|
||||
weights = mx.load(str(model_path / "weights.npz"))
|
||||
model.update(tree_unflatten(list(weights.items())))
|
||||
weights = tree_unflatten(list(weights.items()))
|
||||
if quantization is not None:
|
||||
nn.QuantizedLinear.quantize_module(model, **quantization)
|
||||
model.update(weights)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
|
||||
return model, tokenizer
|
||||
|
||||
@ -169,7 +178,7 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--model-path",
|
||||
type=str,
|
||||
default=".",
|
||||
default="mlx_model",
|
||||
help="The path to the model weights",
|
||||
)
|
||||
parser.add_argument(
|
||||
|
2
llms/qwen/.gitignore
vendored
2
llms/qwen/.gitignore
vendored
@ -1,2 +0,0 @@
|
||||
weights.npz
|
||||
config.json
|
@ -11,11 +11,15 @@ First download and convert the model with:
|
||||
```sh
|
||||
python convert.py
|
||||
```
|
||||
The script downloads the model from Hugging Face. The default model is
|
||||
`Qwen/Qwen-1_8B`. Check out the [Hugging Face page](https://huggingface.co/Qwen) to see a list of available models.
|
||||
|
||||
The conversion script will make the `weights.npz` and `config.json` files in
|
||||
the working directory.
|
||||
To generate a 4-bit quantized model, use ``-q``. For a full list of options:
|
||||
|
||||
The script downloads the model from Hugging Face. The default model is
|
||||
`Qwen/Qwen-1_8B`. Check out the [Hugging Face
|
||||
page](https://huggingface.co/Qwen) to see a list of available models.
|
||||
|
||||
By default, the conversion script will make the directory `mlx_model` and save
|
||||
the converted `weights.npz` and `config.json` there.
|
||||
|
||||
## Generate
|
||||
|
||||
|
@ -1,8 +1,14 @@
|
||||
import argparse
|
||||
import copy
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
import torch
|
||||
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
||||
from qwen import ModelArgs, Qwen
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
|
||||
@ -14,19 +20,58 @@ def replace_key(key: str) -> str:
|
||||
return key
|
||||
|
||||
|
||||
def convert(model_path: str = "Qwen/Qwen-1_8B"):
|
||||
def quantize(weights, config, args):
|
||||
quantized_config = copy.deepcopy(config)
|
||||
|
||||
# Load the model:
|
||||
model_args = ModelArgs()
|
||||
model_args.vocab_size = config["vocab_size"]
|
||||
model_args.hidden_size = config["hidden_size"]
|
||||
model_args.num_attention_heads = config["num_attention_heads"]
|
||||
model_args.num_hidden_layers = config["num_hidden_layers"]
|
||||
model_args.kv_channels = config["kv_channels"]
|
||||
model_args.max_position_embeddings = config["max_position_embeddings"]
|
||||
model_args.layer_norm_epsilon = config["layer_norm_epsilon"]
|
||||
model_args.intermediate_size = config["intermediate_size"]
|
||||
model_args.no_bias = config["no_bias"]
|
||||
model = Qwen(model_args)
|
||||
|
||||
weights = tree_map(mx.array, weights)
|
||||
model.update(tree_unflatten(list(weights.items())))
|
||||
|
||||
# Quantize the model:
|
||||
nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
|
||||
|
||||
# Update the config:
|
||||
quantized_config["quantization"] = {
|
||||
"group_size": args.q_group_size,
|
||||
"bits": args.q_bits,
|
||||
}
|
||||
quantized_weights = dict(tree_flatten(model.parameters()))
|
||||
|
||||
return quantized_weights, quantized_config
|
||||
|
||||
|
||||
def convert(args):
|
||||
mlx_path = Path(args.mlx_path)
|
||||
mlx_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_path, trust_remote_code=True, torch_dtype=torch.float16
|
||||
args.model, trust_remote_code=True, torch_dtype=torch.float16
|
||||
)
|
||||
state_dict = model.state_dict()
|
||||
weights = {replace_key(k): v.numpy() for k, v in state_dict.items()}
|
||||
np.savez("weights.npz", **weights)
|
||||
config = model.config.to_dict()
|
||||
|
||||
if args.quantize:
|
||||
print("[INFO] Quantizing")
|
||||
weights, config = quantize(weights, config, args)
|
||||
|
||||
np.savez(str(mlx_path / "weights.npz"), **weights)
|
||||
|
||||
# write config
|
||||
config = model.config
|
||||
config_dict = config.to_dict()
|
||||
with open("config.json", "w") as f:
|
||||
json.dump(config_dict, f, indent=4)
|
||||
with open(mlx_path / "config.json", "w") as f:
|
||||
json.dump(config, f, indent=4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@ -37,7 +82,29 @@ if __name__ == "__main__":
|
||||
help="The huggingface model to be converted",
|
||||
default="Qwen/Qwen-1_8B",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--mlx-path",
|
||||
type=str,
|
||||
default="mlx_model",
|
||||
help="The path to save the MLX model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-q",
|
||||
"--quantize",
|
||||
help="Generate a quantized model.",
|
||||
action="store_true",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--q_group_size",
|
||||
help="Group size for quantization.",
|
||||
type=int,
|
||||
default=64,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--q_bits",
|
||||
help="Bits per weight for quantization.",
|
||||
type=int,
|
||||
default=4,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
convert(args.model)
|
||||
convert(args)
|
||||
|
@ -1,6 +1,7 @@
|
||||
import argparse
|
||||
import json
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
@ -175,12 +176,11 @@ def generate(prompt: mx.array, model: Qwen, temp: 0.0):
|
||||
yield y
|
||||
|
||||
|
||||
def load_model(
|
||||
tokenizer_path: str = "Qwen/Qwen-1_8B", config_path: str = "config.json"
|
||||
):
|
||||
def load_model(model_path: str, tokenizer_path: str = "Qwen/Qwen-1_8B"):
|
||||
model_args = ModelArgs()
|
||||
|
||||
with open(config_path, "r") as f:
|
||||
model_path = Path(model_path)
|
||||
with open(model_path / "config.json", "r") as f:
|
||||
config = json.load(f)
|
||||
model_args.vocab_size = config["vocab_size"]
|
||||
model_args.hidden_size = config["hidden_size"]
|
||||
@ -193,9 +193,11 @@ def load_model(
|
||||
model_args.no_bias = config["no_bias"]
|
||||
|
||||
model = Qwen(model_args)
|
||||
|
||||
weights = mx.load("weights.npz")
|
||||
weights = mx.load(str(model_path / "weights.npz"))
|
||||
if quantization := config.get("quantization", False):
|
||||
nn.QuantizedLinear.quantize_module(model, **quantization)
|
||||
model.update(tree_unflatten(list(weights.items())))
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
tokenizer_path, trust_remote_code=True, eos_token="<|endoftext|>"
|
||||
)
|
||||
@ -204,6 +206,12 @@ def load_model(
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Qwen inference script")
|
||||
parser.add_argument(
|
||||
"--model-path",
|
||||
type=str,
|
||||
default="mlx_model",
|
||||
help="The path to the model weights and config",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tokenizer",
|
||||
help="The tokenizer to be used, defaults to Qwen/Qwen-1_8B",
|
||||
@ -216,7 +224,7 @@ if __name__ == "__main__":
|
||||
default="蒙古国的首都是乌兰巴托(Ulaanbaatar)\n冰岛的首都是雷克雅未克(Reykjavik)\n埃塞俄比亚的首都是",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max_tokens",
|
||||
"--max-tokens",
|
||||
"-m",
|
||||
type=int,
|
||||
default=100,
|
||||
@ -233,7 +241,7 @@ if __name__ == "__main__":
|
||||
|
||||
mx.random.seed(args.seed)
|
||||
|
||||
model, tokenizer = load_model(args.tokenizer)
|
||||
model, tokenizer = load_model(args.model_path, args.tokenizer)
|
||||
|
||||
prompt = tokenizer(
|
||||
args.prompt,
|
||||
|
Loading…
Reference in New Issue
Block a user