mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-10-24 06:28:07 +08:00
Quantize example (#162)
* testing quantization * conversion + quantization working * one config processor * quantization in mistral / nits in llama * args for quantization * llama / mistral conversion in good shape * phi2 quantized * mixtral * qwen conversion
This commit is contained in:
@@ -2,12 +2,18 @@
|
||||
|
||||
import argparse
|
||||
import collections
|
||||
import copy
|
||||
import glob
|
||||
import json
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
import torch
|
||||
from llama import Llama, ModelArgs, sanitize_config
|
||||
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
||||
|
||||
|
||||
def llama(model_path):
|
||||
@@ -57,9 +63,7 @@ def tiny_llama(model_path):
|
||||
except ImportError as e:
|
||||
print("The transformers package must be installed for this model conversion:")
|
||||
print("pip install transformers")
|
||||
import sys
|
||||
|
||||
sys.exit(0)
|
||||
exit(0)
|
||||
|
||||
model = transformers.AutoModelForCausalLM.from_pretrained(
|
||||
str(model_path)
|
||||
@@ -114,11 +118,40 @@ def tiny_llama(model_path):
|
||||
return weights, params
|
||||
|
||||
|
||||
def quantize(weights, config, args):
|
||||
quantized_config = copy.deepcopy(config)
|
||||
|
||||
# Load the model:
|
||||
config = sanitize_config(config, weights)
|
||||
model = Llama(ModelArgs(**config))
|
||||
weights = tree_map(mx.array, weights)
|
||||
model.update(tree_unflatten(list(weights.items())))
|
||||
|
||||
# Quantize the model:
|
||||
nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
|
||||
|
||||
# Update the config:
|
||||
quantized_config["quantization"] = {
|
||||
"group_size": args.q_group_size,
|
||||
"bits": args.q_bits,
|
||||
}
|
||||
quantized_weights = dict(tree_flatten(model.parameters()))
|
||||
|
||||
return quantized_weights, quantized_config
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Convert Llama weights to MLX")
|
||||
parser.add_argument(
|
||||
"--model-path",
|
||||
help="Path to the model. The MLX weights will also be saved there.",
|
||||
"--torch-path",
|
||||
type=str,
|
||||
help="Path to the PyTorch model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mlx-path",
|
||||
type=str,
|
||||
default="mlx_model",
|
||||
help="Path to save the MLX model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model-name",
|
||||
@@ -130,12 +163,43 @@ if __name__ == "__main__":
|
||||
choices=["tiny_llama", "llama"],
|
||||
default="llama",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-q",
|
||||
"--quantize",
|
||||
help="Generate a quantized model.",
|
||||
action="store_true",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--q_group_size",
|
||||
help="Group size for quantization.",
|
||||
type=int,
|
||||
default=64,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--q_bits",
|
||||
help="Bits per weight for quantization.",
|
||||
type=int,
|
||||
default=4,
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
model_path = Path(args.model_path)
|
||||
weights, params = globals()[args.model_name](model_path)
|
||||
torch_path = Path(args.torch_path)
|
||||
mlx_path = Path(args.mlx_path)
|
||||
mlx_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
print("[INFO] Loading")
|
||||
weights, params = globals()[args.model_name](torch_path)
|
||||
params["model_type"] = "llama"
|
||||
np.savez(str(model_path / "weights.npz"), **weights)
|
||||
with open(model_path / "config.json", "w") as fid:
|
||||
if args.quantize:
|
||||
print("[INFO] Quantizing")
|
||||
weights, params = quantize(weights, params, args)
|
||||
|
||||
print("[INFO] Saving")
|
||||
shutil.copyfile(
|
||||
str(torch_path / "tokenizer.model"),
|
||||
str(mlx_path / "tokenizer.model"),
|
||||
)
|
||||
np.savez(str(mlx_path / "weights.npz"), **weights)
|
||||
with open(mlx_path / "config.json", "w") as fid:
|
||||
json.dump(params, fid, indent=4)
|
||||
|
||||
Reference in New Issue
Block a user