Quantize example (#162)

* testing quantization

* conversion + quantization working

* one config processor

* quantization in mistral / nits in llama

* args for quantization

* llama / mistral conversion in good shape

* phi2 quantized

* mixtral

* qwen conversion
This commit is contained in:
Awni Hannun
2023-12-21 12:59:37 -08:00
committed by GitHub
parent 4c9db80ed2
commit 3cf436b529
17 changed files with 553 additions and 126 deletions

View File

@@ -1,32 +1,98 @@
# Copyright © 2023 Apple Inc.
import argparse
import copy
import json
import shutil
from pathlib import Path
import mlx.core as mx
import mlx.nn as nn
import numpy as np
import torch
from mistral import Mistral, ModelArgs
from mlx.utils import tree_flatten, tree_map, tree_unflatten
def quantize(weights, config, args):
quantized_config = copy.deepcopy(config)
# Load the model:
config.pop("sliding_window", None)
model = Mistral(ModelArgs(**config))
weights = tree_map(mx.array, weights)
model.update(tree_unflatten(list(weights.items())))
# Quantize the model:
nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
# Update the config:
quantized_config["quantization"] = {
"group_size": args.q_group_size,
"bits": args.q_bits,
}
quantized_weights = dict(tree_flatten(model.parameters()))
return quantized_weights, quantized_config
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Convert Mistral weights to MLX.")
parser.add_argument(
"--model-path",
"--torch-path",
type=str,
default="mistral-7B-v0.1/",
help="The path to the Mistral model. The MLX weights will also be saved there.",
default="mistral-7B-v0.1",
help="The path to the PyTorch model.",
)
parser.add_argument(
"--mlx-path",
type=str,
default="mlx_model",
help="The path to save the MLX model.",
)
parser.add_argument(
"-q",
"--quantize",
help="Generate a quantized model.",
action="store_true",
)
parser.add_argument(
"--q_group_size",
help="Group size for quantization.",
type=int,
default=64,
)
parser.add_argument(
"--q_bits",
help="Bits per weight for quantization.",
type=int,
default=4,
)
args = parser.parse_args()
model_path = Path(args.model_path)
state = torch.load(str(model_path / "consolidated.00.pth"))
np.savez(
str(model_path / "weights.npz"),
**{k: v.to(torch.float16).numpy() for k, v in state.items()}
torch_path = Path(args.torch_path)
state = torch.load(str(torch_path / "consolidated.00.pth"))
mlx_path = Path(args.mlx_path)
mlx_path.mkdir(parents=True, exist_ok=True)
weights = {k: v.to(torch.float16).numpy() for k, v in state.items()}
with open(torch_path / "params.json", "r") as f:
config = json.loads(f.read())
if args.quantize:
print("[INFO] Quantizing")
weights, config = quantize(weights, config, args)
# Save weights
np.savez(str(mlx_path / "weights.npz"), **weights)
# Copy tokenizer
shutil.copyfile(
str(torch_path / "tokenizer.model"),
str(mlx_path / "tokenizer.model"),
)
# Save config.json with model_type
with open(model_path / "params.json", "r") as f:
config = json.loads(f.read())
with open(mlx_path / "config.json", "w") as f:
config["model_type"] = "mistral"
with open(model_path / "config.json", "w") as f:
json.dump(config, f, indent=4)