mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-09-02 22:04:53 +08:00
Quantize example (#162)
* testing quantization * conversion + quantization working * one config processor * quantization in mistral / nits in llama * args for quantization * llama / mistral conversion in good shape * phi2 quantized * mixtral * qwen conversion
This commit is contained in:
@@ -1,32 +1,98 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
import json
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
import torch
|
||||
from mistral import Mistral, ModelArgs
|
||||
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
||||
|
||||
|
||||
def quantize(weights, config, args):
|
||||
quantized_config = copy.deepcopy(config)
|
||||
|
||||
# Load the model:
|
||||
config.pop("sliding_window", None)
|
||||
model = Mistral(ModelArgs(**config))
|
||||
weights = tree_map(mx.array, weights)
|
||||
model.update(tree_unflatten(list(weights.items())))
|
||||
|
||||
# Quantize the model:
|
||||
nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
|
||||
|
||||
# Update the config:
|
||||
quantized_config["quantization"] = {
|
||||
"group_size": args.q_group_size,
|
||||
"bits": args.q_bits,
|
||||
}
|
||||
quantized_weights = dict(tree_flatten(model.parameters()))
|
||||
|
||||
return quantized_weights, quantized_config
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Convert Mistral weights to MLX.")
|
||||
parser.add_argument(
|
||||
"--model-path",
|
||||
"--torch-path",
|
||||
type=str,
|
||||
default="mistral-7B-v0.1/",
|
||||
help="The path to the Mistral model. The MLX weights will also be saved there.",
|
||||
default="mistral-7B-v0.1",
|
||||
help="The path to the PyTorch model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mlx-path",
|
||||
type=str,
|
||||
default="mlx_model",
|
||||
help="The path to save the MLX model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-q",
|
||||
"--quantize",
|
||||
help="Generate a quantized model.",
|
||||
action="store_true",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--q_group_size",
|
||||
help="Group size for quantization.",
|
||||
type=int,
|
||||
default=64,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--q_bits",
|
||||
help="Bits per weight for quantization.",
|
||||
type=int,
|
||||
default=4,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
model_path = Path(args.model_path)
|
||||
state = torch.load(str(model_path / "consolidated.00.pth"))
|
||||
np.savez(
|
||||
str(model_path / "weights.npz"),
|
||||
**{k: v.to(torch.float16).numpy() for k, v in state.items()}
|
||||
torch_path = Path(args.torch_path)
|
||||
state = torch.load(str(torch_path / "consolidated.00.pth"))
|
||||
mlx_path = Path(args.mlx_path)
|
||||
mlx_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
weights = {k: v.to(torch.float16).numpy() for k, v in state.items()}
|
||||
with open(torch_path / "params.json", "r") as f:
|
||||
config = json.loads(f.read())
|
||||
|
||||
if args.quantize:
|
||||
print("[INFO] Quantizing")
|
||||
weights, config = quantize(weights, config, args)
|
||||
|
||||
# Save weights
|
||||
np.savez(str(mlx_path / "weights.npz"), **weights)
|
||||
|
||||
# Copy tokenizer
|
||||
shutil.copyfile(
|
||||
str(torch_path / "tokenizer.model"),
|
||||
str(mlx_path / "tokenizer.model"),
|
||||
)
|
||||
|
||||
# Save config.json with model_type
|
||||
with open(model_path / "params.json", "r") as f:
|
||||
config = json.loads(f.read())
|
||||
with open(mlx_path / "config.json", "w") as f:
|
||||
config["model_type"] = "mistral"
|
||||
with open(model_path / "config.json", "w") as f:
|
||||
json.dump(config, f, indent=4)
|
||||
|
Reference in New Issue
Block a user