mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-09-01 04:14:38 +08:00
Quantize example (#162)
* testing quantization * conversion + quantization working * one config processor * quantization in mistral / nits in llama * args for quantization * llama / mistral conversion in good shape * phi2 quantized * mixtral * qwen conversion
This commit is contained in:
@@ -43,10 +43,18 @@ Now from `mlx-exmaples/mixtral` convert and save the weights as NumPy arrays so
|
||||
MLX can read them:
|
||||
|
||||
```
|
||||
python convert.py --model-path $MIXTRAL_MODEL/
|
||||
python convert.py --torch-path $MIXTRAL_MODEL/
|
||||
```
|
||||
|
||||
The conversion script will save the converted weights in the same location.
|
||||
To generate a 4-bit quantized model, use ``-q``. For a full list of options:
|
||||
|
||||
```
|
||||
python convert.py --help
|
||||
```
|
||||
|
||||
By default, the conversion script will make the directory `mlx_model` and save
|
||||
the converted `weights.npz`, `tokenizer.model`, and `config.json` there.
|
||||
|
||||
|
||||
### Generate
|
||||
|
||||
|
Reference in New Issue
Block a user