Quantize example (#162)

* testing quantization

* conversion + quantization working

* one config processor

* quantization in mistral / nits in llama

* args for quantization

* llama / mistral conversion in good shape

* phi2 quantized

* mixtral

* qwen conversion
This commit is contained in:
Awni Hannun
2023-12-21 12:59:37 -08:00
committed by GitHub
parent 4c9db80ed2
commit 3cf436b529
17 changed files with 553 additions and 126 deletions

View File

@@ -1 +0,0 @@
weights.npz

View File

@@ -15,7 +15,14 @@ Download and convert the model:
python convert.py
```
This will make the `weights.npz` file which MLX can read.
To generate a 4-bit quantized model use the `-q` flag:
```
python convert.py -q
```
By default, the conversion script will make the directory `mlx_model` and save
the converted `weights.npz`, and `config.json` there.
> [!TIP] Alternatively, you can also download a few converted checkpoints from
> the [MLX Community](https://huggingface.co/mlx-community) organization on

View File

@@ -1,7 +1,37 @@
import argparse
import copy
import json
from pathlib import Path
import mlx.core as mx
import mlx.nn as nn
import numpy as np
from mlx.utils import tree_flatten, tree_map, tree_unflatten
from phi2 import ModelArgs, Phi2
from transformers import AutoModelForCausalLM
def quantize(weights, config, args):
quantized_config = copy.deepcopy(config)
# Load the model:
model = Phi2(ModelArgs())
weights = tree_map(mx.array, weights)
model.update(tree_unflatten(list(weights.items())))
# Quantize the model:
nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
# Update the config:
quantized_config["quantization"] = {
"group_size": args.q_group_size,
"bits": args.q_bits,
}
quantized_weights = dict(tree_flatten(model.parameters()))
return quantized_weights, quantized_config
def replace_key(key: str) -> str:
if "wte.weight" in key:
key = "wte.weight"
@@ -12,12 +42,50 @@ def replace_key(key: str) -> str:
def convert():
parser = argparse.ArgumentParser(description="Convert Phi-2 weights to MLX")
parser.add_argument(
"--mlx-path",
type=str,
default="mlx_model",
help="The path to save the MLX model.",
)
parser.add_argument(
"-q",
"--quantize",
help="Generate a quantized model.",
action="store_true",
)
parser.add_argument(
"--q_group_size",
help="Group size for quantization.",
type=int,
default=64,
)
parser.add_argument(
"--q_bits",
help="Bits per weight for quantization.",
type=int,
default=4,
)
args = parser.parse_args()
mlx_path = Path(args.mlx_path)
mlx_path.mkdir(parents=True, exist_ok=True)
model = AutoModelForCausalLM.from_pretrained(
"microsoft/phi-2", torch_dtype="auto", trust_remote_code=True
)
state_dict = model.state_dict()
weights = {replace_key(k): v.numpy() for k, v in state_dict.items()}
np.savez("weights.npz", **weights)
params = {}
if args.quantize:
print("[INFO] Quantizing")
weights, params = quantize(weights, params, args)
np.savez(str(mlx_path / "weights.npz"), **weights)
with open(mlx_path / "config.json", "w") as fid:
params["model_type"] = "phi2"
json.dump(params, fid, indent=4)
if __name__ == "__main__":

View File

@@ -1,4 +1,5 @@
import argparse
import json
import math
from dataclasses import dataclass
from pathlib import Path
@@ -158,8 +159,16 @@ def generate(prompt: mx.array, model: Phi2, temp: Optional[float] = 0.0):
def load_model(model_path: str):
model = Phi2(ModelArgs())
model_path = Path(model_path)
with open(model_path / "config.json", "r") as f:
config = json.loads(f.read())
config.pop("model_type", None)
quantization = config.pop("quantization", None)
weights = mx.load(str(model_path / "weights.npz"))
model.update(tree_unflatten(list(weights.items())))
weights = tree_unflatten(list(weights.items()))
if quantization is not None:
nn.QuantizedLinear.quantize_module(model, **quantization)
model.update(weights)
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
return model, tokenizer
@@ -169,7 +178,7 @@ if __name__ == "__main__":
parser.add_argument(
"--model-path",
type=str,
default=".",
default="mlx_model",
help="The path to the model weights",
)
parser.add_argument(