mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-12-16 02:08:55 +08:00
Quantize example (#162)
* testing quantization * conversion + quantization working * one config processor * quantization in mistral / nits in llama * args for quantization * llama / mistral conversion in good shape * phi2 quantized * mixtral * qwen conversion
This commit is contained in:
1
llms/phi2/.gitignore
vendored
1
llms/phi2/.gitignore
vendored
@@ -1 +0,0 @@
|
||||
weights.npz
|
||||
@@ -15,7 +15,14 @@ Download and convert the model:
|
||||
python convert.py
|
||||
```
|
||||
|
||||
This will make the `weights.npz` file which MLX can read.
|
||||
To generate a 4-bit quantized model use the `-q` flag:
|
||||
|
||||
```
|
||||
python convert.py -q
|
||||
```
|
||||
|
||||
By default, the conversion script will make the directory `mlx_model` and save
|
||||
the converted `weights.npz`, and `config.json` there.
|
||||
|
||||
> [!TIP] Alternatively, you can also download a few converted checkpoints from
|
||||
> the [MLX Community](https://huggingface.co/mlx-community) organization on
|
||||
|
||||
@@ -1,7 +1,37 @@
|
||||
import argparse
|
||||
import copy
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import numpy as np
|
||||
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
||||
from phi2 import ModelArgs, Phi2
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
|
||||
def quantize(weights, config, args):
|
||||
quantized_config = copy.deepcopy(config)
|
||||
|
||||
# Load the model:
|
||||
model = Phi2(ModelArgs())
|
||||
weights = tree_map(mx.array, weights)
|
||||
model.update(tree_unflatten(list(weights.items())))
|
||||
|
||||
# Quantize the model:
|
||||
nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
|
||||
|
||||
# Update the config:
|
||||
quantized_config["quantization"] = {
|
||||
"group_size": args.q_group_size,
|
||||
"bits": args.q_bits,
|
||||
}
|
||||
quantized_weights = dict(tree_flatten(model.parameters()))
|
||||
|
||||
return quantized_weights, quantized_config
|
||||
|
||||
|
||||
def replace_key(key: str) -> str:
|
||||
if "wte.weight" in key:
|
||||
key = "wte.weight"
|
||||
@@ -12,12 +42,50 @@ def replace_key(key: str) -> str:
|
||||
|
||||
|
||||
def convert():
|
||||
parser = argparse.ArgumentParser(description="Convert Phi-2 weights to MLX")
|
||||
parser.add_argument(
|
||||
"--mlx-path",
|
||||
type=str,
|
||||
default="mlx_model",
|
||||
help="The path to save the MLX model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-q",
|
||||
"--quantize",
|
||||
help="Generate a quantized model.",
|
||||
action="store_true",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--q_group_size",
|
||||
help="Group size for quantization.",
|
||||
type=int,
|
||||
default=64,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--q_bits",
|
||||
help="Bits per weight for quantization.",
|
||||
type=int,
|
||||
default=4,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
mlx_path = Path(args.mlx_path)
|
||||
mlx_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"microsoft/phi-2", torch_dtype="auto", trust_remote_code=True
|
||||
)
|
||||
state_dict = model.state_dict()
|
||||
weights = {replace_key(k): v.numpy() for k, v in state_dict.items()}
|
||||
np.savez("weights.npz", **weights)
|
||||
params = {}
|
||||
if args.quantize:
|
||||
print("[INFO] Quantizing")
|
||||
weights, params = quantize(weights, params, args)
|
||||
|
||||
np.savez(str(mlx_path / "weights.npz"), **weights)
|
||||
with open(mlx_path / "config.json", "w") as fid:
|
||||
params["model_type"] = "phi2"
|
||||
json.dump(params, fid, indent=4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import argparse
|
||||
import json
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
@@ -158,8 +159,16 @@ def generate(prompt: mx.array, model: Phi2, temp: Optional[float] = 0.0):
|
||||
def load_model(model_path: str):
|
||||
model = Phi2(ModelArgs())
|
||||
model_path = Path(model_path)
|
||||
with open(model_path / "config.json", "r") as f:
|
||||
config = json.loads(f.read())
|
||||
config.pop("model_type", None)
|
||||
quantization = config.pop("quantization", None)
|
||||
weights = mx.load(str(model_path / "weights.npz"))
|
||||
model.update(tree_unflatten(list(weights.items())))
|
||||
weights = tree_unflatten(list(weights.items()))
|
||||
if quantization is not None:
|
||||
nn.QuantizedLinear.quantize_module(model, **quantization)
|
||||
model.update(weights)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
|
||||
return model, tokenizer
|
||||
|
||||
@@ -169,7 +178,7 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--model-path",
|
||||
type=str,
|
||||
default=".",
|
||||
default="mlx_model",
|
||||
help="The path to the model weights",
|
||||
)
|
||||
parser.add_argument(
|
||||
|
||||
Reference in New Issue
Block a user