Add "from_draft" to GenerationResponse (#1272)

* Add from_draft field in GenerationResponse

* Cleanup

* Re-work for minimal changes, add test

* Fix comment
This commit is contained in:
Matt Clayton
2025-02-11 18:41:02 -05:00
committed by GitHub
parent bded1a8fcd
commit 3d677f0870
2 changed files with 65 additions and 10 deletions

View File

@@ -13,7 +13,18 @@ import time
from dataclasses import dataclass
from pathlib import Path
from textwrap import dedent
from typing import Any, Callable, Dict, Generator, List, Optional, Tuple, Type, Union
from typing import (
Any,
Callable,
Dict,
Generator,
List,
NamedTuple,
Optional,
Tuple,
Type,
Union,
)
import mlx.core as mx
import mlx.nn as nn
@@ -65,6 +76,7 @@ class GenerationResponse:
Args:
text (str): The next segment of decoded text. This can be an empty string.
token (int): The next token.
from_draft (bool): Whether the token was generated by the draft model.
logprobs (mx.array): A vector of log probabilities.
prompt_tokens (int): The number of tokens in the prompt.
prompt_tps (float): The prompt processing tokens-per-second.
@@ -77,6 +89,7 @@ class GenerationResponse:
text: str
token: int
logprobs: mx.array
from_draft: bool
prompt_tokens: int
prompt_tps: float
generation_tokens: int
@@ -338,7 +351,7 @@ def speculative_generate_step(
kv_bits: Optional[int] = None,
kv_group_size: int = 64,
quantized_kv_start: int = 0,
) -> Generator[Tuple[mx.array, mx.array], None, None]:
) -> Generator[Tuple[mx.array, mx.array, bool], None, None]:
"""
A generator producing token ids based on the given prompt from the model.
@@ -365,7 +378,8 @@ def speculative_generate_step(
when ``kv_bits`` is non-None. Default: ``0``.
Yields:
Tuple[mx.array, mx.array]: One token and a vector of log probabilities.
Tuple[mx.array, mx.array, bool]: One token, a vector of log probabilities,
and a bool indicating if the token was generated by the draft model
"""
y = prompt
@@ -450,12 +464,12 @@ def speculative_generate_step(
break
n += 1
ntoks += 1
yield tn, lpn
yield tn, lpn, True
if ntoks == max_tokens:
break
if ntoks < max_tokens:
ntoks += 1
yield tokens[n], logprobs[n]
yield tokens[n], logprobs[n], False
if ntoks == max_tokens:
break
@@ -463,7 +477,7 @@ def speculative_generate_step(
y = mx.array([tokens[n]], mx.uint32)
draft_y = y
# If we accpeted all the draft tokens, include the last
# If we accepted all the draft tokens, include the last
# draft token in the next draft step since it hasn't been
# processed yet by the draft model
if n == num_draft:
@@ -518,6 +532,10 @@ def stream_generate(
if draft_model is None:
kwargs.pop("num_draft_tokens", None)
token_generator = generate_step(prompt, model, **kwargs)
# from_draft always false for non-speculative generation
token_generator = (
(token, logprobs, False) for token, logprobs in token_generator
)
else:
kwargs.pop("max_kv_size", None)
token_generator = speculative_generate_step(
@@ -526,7 +544,7 @@ def stream_generate(
with wired_limit(model, [generation_stream]):
detokenizer.reset()
tic = time.perf_counter()
for n, (token, logprobs) in enumerate(token_generator):
for n, (token, logprobs, from_draft) in enumerate(token_generator):
if n == 0:
prompt_time = time.perf_counter() - tic
prompt_tps = prompt.size / prompt_time
@@ -540,6 +558,7 @@ def stream_generate(
text=detokenizer.last_segment,
token=token,
logprobs=logprobs,
from_draft=from_draft,
prompt_tokens=prompt.size,
prompt_tps=prompt_tps,
generation_tokens=n + 1,
@@ -553,6 +572,7 @@ def stream_generate(
text=detokenizer.last_segment,
token=token,
logprobs=logprobs,
from_draft=from_draft,
prompt_tokens=prompt.size,
prompt_tps=prompt_tps,
generation_tokens=n + 1,