LoRA: Split small function

This commit is contained in:
madroid 2024-09-20 11:06:06 +08:00
parent bfd4ba2347
commit 3f6a5f19fd

View File

@ -117,54 +117,65 @@ def create_dataset(path: Path, tokenizer: PreTrainedTokenizer = None):
)
def create_local_dataset(args, tokenizer: PreTrainedTokenizer):
names = ("train", "valid", "test")
data_path = Path(args.data)
train, valid, test = [
create_dataset(data_path / f"{n}.jsonl", tokenizer) for n in names
]
return train, valid, test
def create_hf_dataset(args, tokenizer: PreTrainedTokenizer):
import datasets
hf_args = args.hf_dataset
dataset_name = hf_args["name"]
print(f"Loading Hugging Face dataset {dataset_name}.")
text_feature = hf_args.get("text_feature")
prompt_feature = hf_args.get("prompt_feature")
completion_feature = hf_args.get("completion_feature")
def create_hf_dataset(split: str = None):
ds = datasets.load_dataset(
dataset_name,
split=split,
**hf_args.get("config", {}),
)
if prompt_feature and completion_feature:
return CompletionsDataset(
ds, tokenizer, prompt_feature, completion_feature
)
elif text_feature:
return Dataset(train_ds, text_key=text_feature)
else:
raise ValueError(
"Specify either a prompt and completion feature or a text "
"feature for the Hugging Face dataset."
)
if args.train:
train_split = hf_args.get("train_split", "train[:80%]")
valid_split = hf_args.get("valid_split", "train[-10%:]")
train = create_hf_dataset(split=train_split)
valid = create_hf_dataset(split=valid_split)
else:
train, valid = [], []
if args.test:
test = create_hf_dataset(split=hf_args.get("test_split"))
else:
test = []
return train, valid, test
def load_dataset(args, tokenizer: PreTrainedTokenizer):
if getattr(args, "hf_dataset", None) is not None:
import datasets
hf_args = args.hf_dataset
dataset_name = hf_args["name"]
print(f"Loading Hugging Face dataset {dataset_name}.")
text_feature = hf_args.get("text_feature")
prompt_feature = hf_args.get("prompt_feature")
completion_feature = hf_args.get("completion_feature")
def create_hf_dataset(split: str = None):
ds = datasets.load_dataset(
dataset_name,
split=split,
**hf_args.get("config", {}),
)
if prompt_feature and completion_feature:
return CompletionsDataset(
ds, tokenizer, prompt_feature, completion_feature
)
elif text_feature:
return Dataset(train_ds, text_key=text_feature)
else:
raise ValueError(
"Specify either a prompt and completion feature or a text "
"feature for the Hugging Face dataset."
)
if args.train:
train_split = hf_args.get("train_split", "train[:80%]")
valid_split = hf_args.get("valid_split", "train[-10%:]")
train = create_hf_dataset(split=train_split)
valid = create_hf_dataset(split=valid_split)
else:
train, valid = [], []
if args.test:
test = create_hf_dataset(split=hf_args.get("test_split"))
else:
test = []
train, valid, test = create_hf_dataset(args, tokenizer)
else:
names = ("train", "valid", "test")
data_path = Path(args.data)
train, valid, test = create_local_dataset(args, tokenizer)
train, valid, test = [
create_dataset(data_path / f"{n}.jsonl", tokenizer) for n in names
]
if args.train and len(train) == 0:
raise ValueError(
"Training set not found or empty. Must provide training set for fine-tuning."