mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 09:21:18 +08:00
LoRA: Split small function
This commit is contained in:
parent
bfd4ba2347
commit
3f6a5f19fd
@ -117,54 +117,65 @@ def create_dataset(path: Path, tokenizer: PreTrainedTokenizer = None):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def create_local_dataset(args, tokenizer: PreTrainedTokenizer):
|
||||||
|
names = ("train", "valid", "test")
|
||||||
|
data_path = Path(args.data)
|
||||||
|
|
||||||
|
train, valid, test = [
|
||||||
|
create_dataset(data_path / f"{n}.jsonl", tokenizer) for n in names
|
||||||
|
]
|
||||||
|
return train, valid, test
|
||||||
|
|
||||||
|
|
||||||
|
def create_hf_dataset(args, tokenizer: PreTrainedTokenizer):
|
||||||
|
import datasets
|
||||||
|
|
||||||
|
hf_args = args.hf_dataset
|
||||||
|
dataset_name = hf_args["name"]
|
||||||
|
print(f"Loading Hugging Face dataset {dataset_name}.")
|
||||||
|
text_feature = hf_args.get("text_feature")
|
||||||
|
prompt_feature = hf_args.get("prompt_feature")
|
||||||
|
completion_feature = hf_args.get("completion_feature")
|
||||||
|
|
||||||
|
def create_hf_dataset(split: str = None):
|
||||||
|
ds = datasets.load_dataset(
|
||||||
|
dataset_name,
|
||||||
|
split=split,
|
||||||
|
**hf_args.get("config", {}),
|
||||||
|
)
|
||||||
|
if prompt_feature and completion_feature:
|
||||||
|
return CompletionsDataset(
|
||||||
|
ds, tokenizer, prompt_feature, completion_feature
|
||||||
|
)
|
||||||
|
elif text_feature:
|
||||||
|
return Dataset(train_ds, text_key=text_feature)
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
"Specify either a prompt and completion feature or a text "
|
||||||
|
"feature for the Hugging Face dataset."
|
||||||
|
)
|
||||||
|
|
||||||
|
if args.train:
|
||||||
|
train_split = hf_args.get("train_split", "train[:80%]")
|
||||||
|
valid_split = hf_args.get("valid_split", "train[-10%:]")
|
||||||
|
train = create_hf_dataset(split=train_split)
|
||||||
|
valid = create_hf_dataset(split=valid_split)
|
||||||
|
else:
|
||||||
|
train, valid = [], []
|
||||||
|
if args.test:
|
||||||
|
test = create_hf_dataset(split=hf_args.get("test_split"))
|
||||||
|
else:
|
||||||
|
test = []
|
||||||
|
|
||||||
|
return train, valid, test
|
||||||
|
|
||||||
|
|
||||||
def load_dataset(args, tokenizer: PreTrainedTokenizer):
|
def load_dataset(args, tokenizer: PreTrainedTokenizer):
|
||||||
if getattr(args, "hf_dataset", None) is not None:
|
if getattr(args, "hf_dataset", None) is not None:
|
||||||
import datasets
|
train, valid, test = create_hf_dataset(args, tokenizer)
|
||||||
|
|
||||||
hf_args = args.hf_dataset
|
|
||||||
dataset_name = hf_args["name"]
|
|
||||||
print(f"Loading Hugging Face dataset {dataset_name}.")
|
|
||||||
text_feature = hf_args.get("text_feature")
|
|
||||||
prompt_feature = hf_args.get("prompt_feature")
|
|
||||||
completion_feature = hf_args.get("completion_feature")
|
|
||||||
|
|
||||||
def create_hf_dataset(split: str = None):
|
|
||||||
ds = datasets.load_dataset(
|
|
||||||
dataset_name,
|
|
||||||
split=split,
|
|
||||||
**hf_args.get("config", {}),
|
|
||||||
)
|
|
||||||
if prompt_feature and completion_feature:
|
|
||||||
return CompletionsDataset(
|
|
||||||
ds, tokenizer, prompt_feature, completion_feature
|
|
||||||
)
|
|
||||||
elif text_feature:
|
|
||||||
return Dataset(train_ds, text_key=text_feature)
|
|
||||||
else:
|
|
||||||
raise ValueError(
|
|
||||||
"Specify either a prompt and completion feature or a text "
|
|
||||||
"feature for the Hugging Face dataset."
|
|
||||||
)
|
|
||||||
|
|
||||||
if args.train:
|
|
||||||
train_split = hf_args.get("train_split", "train[:80%]")
|
|
||||||
valid_split = hf_args.get("valid_split", "train[-10%:]")
|
|
||||||
train = create_hf_dataset(split=train_split)
|
|
||||||
valid = create_hf_dataset(split=valid_split)
|
|
||||||
else:
|
|
||||||
train, valid = [], []
|
|
||||||
if args.test:
|
|
||||||
test = create_hf_dataset(split=hf_args.get("test_split"))
|
|
||||||
else:
|
|
||||||
test = []
|
|
||||||
|
|
||||||
else:
|
else:
|
||||||
names = ("train", "valid", "test")
|
train, valid, test = create_local_dataset(args, tokenizer)
|
||||||
data_path = Path(args.data)
|
|
||||||
|
|
||||||
train, valid, test = [
|
|
||||||
create_dataset(data_path / f"{n}.jsonl", tokenizer) for n in names
|
|
||||||
]
|
|
||||||
if args.train and len(train) == 0:
|
if args.train and len(train) == 0:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
"Training set not found or empty. Must provide training set for fine-tuning."
|
"Training set not found or empty. Must provide training set for fine-tuning."
|
||||||
|
Loading…
Reference in New Issue
Block a user