Feature: QDoRA (#891)

* feat: QDoRA with tests and a small bug fix for recalculation of self.m

* some simplifications and fixes

---------

Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
Zai Thottakath
2024-09-30 10:01:11 -05:00
committed by GitHub
parent aa1c8abdc6
commit 418d9a5511
2 changed files with 183 additions and 11 deletions

View File

@@ -14,10 +14,11 @@ class DoRALinear(nn.Module):
dropout: float = 0.0,
scale: float = 20.0,
):
# TODO support quantized weights in DoRALinear
# TODO remove when input_dims and output_dims are attributes
# on linear and quantized linear
output_dims, input_dims = linear.weight.shape
if isinstance(linear, nn.QuantizedLinear):
raise ValueError("DoRALinear does not yet support quantization.")
input_dims *= 32 // linear.bits
dora_lin = DoRALinear(
input_dims=input_dims,
output_dims=output_dims,
@@ -31,13 +32,13 @@ class DoRALinear(nn.Module):
def fuse(self, de_quantize: bool = False):
linear = self.linear
bias = "bias" in linear
weight = linear.weight
weight = self._dequantized_weight()
# Use the same type as the linear weight if not quantized
# Use the same type as the linear weight
dtype = weight.dtype
output_dims, input_dims = weight.shape
fused_linear = nn.Linear(input_dims, output_dims, bias=bias)
fused_linear = nn.Linear(input_dims, output_dims, bias=False)
lora_b = (self.scale * self.lora_b.T).astype(dtype)
lora_a = self.lora_a.T.astype(dtype)
@@ -47,6 +48,13 @@ class DoRALinear(nn.Module):
if bias:
fused_linear.bias = linear.bias
if self._is_quantized() and not de_quantize:
fused_linear = nn.QuantizedLinear.from_linear(
fused_linear,
linear.group_size,
linear.bits,
)
return fused_linear
def __init__(
@@ -76,22 +84,45 @@ class DoRALinear(nn.Module):
)
self.lora_b = mx.zeros(shape=(r, output_dims))
def set_linear(self, linear: nn.Linear):
def set_linear(self, linear):
"""
Set the self.linear layer and recompute self.m.
"""
self.linear = linear
self.m = mx.linalg.norm(self.linear.weight, axis=1)
self.m = mx.linalg.norm(self._dequantized_weight().astype(mx.float32), axis=1)
def _dequantized_weight(self):
"""
Return the weight of linear layer and dequantize it if is quantized
"""
weight = self.linear.weight
if self._is_quantized():
weight = mx.dequantize(
weight,
self.linear.scales,
self.linear.biases,
self.linear.group_size,
self.linear.bits,
)
return weight
def _is_quantized(self):
return isinstance(self.linear, nn.QuantizedLinear)
def __call__(self, x):
# Regular LoRA (without a bias)
y = x @ self.linear.weight.T
w = self._dequantized_weight()
y = x @ w.T
z = (self.dropout(x) @ self.lora_a) @ self.lora_b
out = y + (self.scale * z).astype(x.dtype)
# Compute the norm of the adapted weights
adapted = self.linear.weight + (self.scale * self.lora_b.T) @ self.lora_a.T
adapted = w + (self.scale * self.lora_b.T) @ self.lora_a.T
denom = mx.stop_gradient(mx.linalg.norm(adapted, axis=1))
# Remove the norm and scale by the learned magnitude
out = (self.m / denom) * out
out = (self.m / denom).astype(x.dtype) * out
if "bias" in self.linear:
out = out + self.linear.bias