distributed evaluate

This commit is contained in:
Alex Barron 2024-12-18 22:12:08 -08:00
parent 9a3ddc3e65
commit 4385363c0f

View File

@ -20,11 +20,10 @@ from lm_eval.api.model import LM
from lm_eval.api.registry import register_model
from tqdm import tqdm
from .models.base import create_causal_mask
from .models.cache import make_prompt_cache
from .utils import load, stream_generate
PAD = 0
def _len_longest_common_prefix(a, b):
l = 0
@ -43,31 +42,14 @@ def _rstrip_until(s, untils):
return s[: min(f)]
def _pad_inputs(
inputs,
maxlen,
genlen=0,
pad_left=False,
pad_multiple=32,
truncate=False,
):
# pad the prompts to the left with at least genlen tokens.
actual_maxlen = max(len(p) for p in inputs) + genlen
if actual_maxlen > maxlen:
if not truncate:
raise ValueError("Inputs are too long.")
else: # drop begining
actual_maxlen = maxlen
inputs = [p[max(0, len(p) - maxlen) :] for p in inputs]
if pad_multiple > 0:
maxlen = (actual_maxlen + pad_multiple - 1) // pad_multiple
maxlen *= pad_multiple
assert PAD == 0
lr = np.array((1, 0) if pad_left else (0, 1))
return np.stack(
[np.pad(np.array(x, np.int32), lr * (maxlen - len(x))) for x in inputs],
def _pad_inputs(inputs):
lengths = mx.array([len(x) for x in inputs])
maxlen = lengths.max()
padded = mx.stack(
[mx.pad(mx.array(x), (0, maxlen - len(x))) for x in inputs],
axis=0,
)
return padded, lengths
@register_model("mlxlm")
@ -87,28 +69,31 @@ class MLXLM(LM):
self.tokenizer.chat_template is not None
)
def _score_fn(self, inputs, tokenize=True, step_size=32):
if tokenize:
inputs = self._tokenize(inputs)
inputs = _pad_inputs(inputs, self._max_tokens, truncate=False)
inputs = mx.array(inputs)
def _score_fn(self, inputs, step_size=64):
inputs, lengths = _pad_inputs(inputs)
inputs, targets = inputs[..., :-1], inputs[..., 1:]
cache = make_prompt_cache(self._model)
mask = targets != PAD
# TODO: come up with a better way to get the dtype
dtype = self._model.model.embed_tokens(inputs).dtype
scores, is_greedy = [], []
for i in range(0, inputs.shape[1], step_size):
logits = self._model(inputs[:, i : i + step_size], cache=cache)
inp = inputs[:, i : i + step_size]
T = inp.shape[1]
offset = cache[0].offset
mask = create_causal_mask(T, offset, lengths=lengths).astype(dtype)
logits = self._model(inp, cache=cache, mask=mask)
log_probs = nn.log_softmax(logits.astype(mx.float32))
score = mx.take_along_axis(
log_probs, targets[:, i : i + step_size, mx.newaxis], axis=-1
)[..., 0]
ig = mask[:, i : i + step_size] * (
targets[:, i : i + step_size] == mx.argmax(logits, axis=-1)
)
ig = targets[:, i : i + step_size] == mx.argmax(logits, axis=-1)
ig = mx.where(mx.arange(T) + offset < lengths[:, None], ig, False)
mx.eval(score, ig)
mx.metal.clear_cache()
@ -119,37 +104,26 @@ class MLXLM(LM):
scores = mx.concatenate(scores, axis=1)
is_greedy = mx.concatenate(is_greedy, axis=1)
return scores, mask.sum(axis=-1), is_greedy
def _loglikelihood(self, texts, score_spans=None, tokenize=True):
# sort by length to get batches with little padding.
sorted_indices = sorted(range(len(texts)), key=lambda i: -len(texts[i]))
sorted_inputs = [texts[sorted_indices[i]] for i in range(len(texts))]
sorted_spans = None
if score_spans is not None:
sorted_spans = [score_spans[sorted_indices[i]] for i in range(len(texts))]
return scores, lengths, is_greedy
def _loglikelihood(self, texts, score_spans=None):
results = []
for i in tqdm(range(0, len(sorted_inputs), self._batch_size)):
batch = sorted_inputs[i : i + self._batch_size]
scores, length, is_greedy = self._score_fn(batch, tokenize=tokenize)
for i in tqdm(range(0, len(texts), self._batch_size)):
batch = texts[i : i + self._batch_size]
scores, length, is_greedy = self._score_fn(batch)
for j in range(len(batch)):
if sorted_spans is None: # full sequence score
mask = mx.arange(scores[j].shape[-1]) < length
score = (scores[j].astype(mx.float32) * mask).sum(axis=-1)
ig = (is_greedy[j].astype(mx.int32) * mask).sum(axis=-1)
if score_spans is None: # full sequence score
l = length[j].item()
score = scores[j][:l].astype(mx.float32).sum()
ig = is_greedy[j][:l].astype(mx.int32).sum()
else: # subsequence score
start, end = sorted_spans[i + j]
start, end = score_spans[i + j]
score = scores[j][start:end].astype(mx.float32).sum()
ig = is_greedy[j][start:end].astype(mx.int32).sum()
length = end - start
results.append((score.item(), ig.item(), length))
# reorder the outputs
inv_sort = np.argsort(sorted_indices)
results = [results[inv_sort[i]] for i in range(len(results))]
return results
def _tokenize(self, texts):
@ -222,13 +196,45 @@ class MLXLM(LM):
+ "completion longer than context."
)
num_results = len(shortened)
# sort by length to get batches with little padding.
sorted_indices = sorted(range(len(shortened)), key=lambda i: -len(shortened[i]))
shortened = [shortened[i] for i in sorted_indices]
completion_spans = [completion_spans[i] for i in sorted_indices]
group = mx.distributed.init() if mx.distributed.is_available() else None
if group is not None:
# split strided so we have approximately the same lengths on each node
shortened = shortened[group.rank() :: group.size()]
completion_spans = completion_spans[group.rank() :: group.size()]
# model scoring, returns num_requests x (logp, is_greedy, length).
results = self._loglikelihood(
shortened,
score_spans=completion_spans,
tokenize=False,
)
return [(r[0], r[1] == r[2]) for r in results]
scores = mx.array([r[0] for r in results])
is_greedy = mx.array([r[1] == r[2] for r in results])
# all gather the results across groups
if group is not None:
per_group = int(np.ceil(num_results / group.size()))
scores = mx.pad(scores, ((0, per_group - len(scores)),))
scores = mx.distributed.all_gather(scores[mx.newaxis], stream=mx.cpu)
scores = scores.T.reshape(-1)
is_greedy = mx.distributed.all_gather(is_greedy[mx.newaxis], stream=mx.cpu)
is_greedy = mx.pad(is_greedy, ((0, per_group - len(is_greedy))))
is_greedy = is_greedy.T.reshape(-1)
scores = np.array(scores[:num_results])
is_greedy = np.array(is_greedy[:num_results])
results = [(score, ig) for score, ig in zip(scores, is_greedy)]
inv_sort = np.argsort(sorted_indices)
results = [results[inv_sort[i]] for i in range(len(inv_sort))]
return results
tokenizer_name = lm_eval.models.huggingface.HFLM.tokenizer_name
apply_chat_template = lm_eval.models.huggingface.HFLM.apply_chat_template
@ -268,7 +274,7 @@ class MLXLM(LM):
logging.info(
"Estimating loglikelihood rolling for %d sequences." % len(requests)
)
inputs = [req.args[0] for req in requests]
inputs = self._tokenize([req.args[0] for req in requests])
return [t[0] for t in self._loglikelihood(inputs)]
def generate_until(self, requests) -> list[str]: