Enable more BERT models (#580)

* Update convert.py

* Update model.py

* Update test.py

* Update model.py

* Update convert.py

* Add files via upload

* Update convert.py

* format

* nit

* nit

---------

Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
yzimmermann
2024-03-20 01:21:33 +01:00
committed by GitHub
parent b0bcd86a40
commit 4680ef4413
4 changed files with 76 additions and 68 deletions

View File

@@ -1,3 +1,4 @@
import argparse
from typing import List
import model
@@ -16,19 +17,41 @@ def run_torch(bert_model: str, batch: List[str]):
if __name__ == "__main__":
bert_model = "bert-base-uncased"
mlx_model = "weights/bert-base-uncased.npz"
batch = [
"This is an example of BERT working in MLX.",
"A second string",
"This is another string.",
]
torch_output, torch_pooled = run_torch(bert_model, batch)
mlx_output, mlx_pooled = model.run(bert_model, mlx_model, batch)
assert np.allclose(
torch_output, mlx_output, rtol=1e-4, atol=1e-5
), "Model output is different"
assert np.allclose(
torch_pooled, mlx_pooled, rtol=1e-4, atol=1e-5
), "Model pooled output is different"
print("Tests pass :)")
parser = argparse.ArgumentParser(
description="Run a BERT-like model for a batch of text."
)
parser.add_argument(
"--bert-model",
type=str,
default="bert-base-uncased",
help="The model identifier for a BERT-like model from Hugging Face Transformers.",
)
parser.add_argument(
"--mlx-model",
type=str,
default="weights/bert-base-uncased.npz",
help="The path of the stored MLX BERT weights (npz file).",
)
parser.add_argument(
"--text",
nargs="+",
default=["This is an example of BERT working in MLX."],
help="A batch of texts to process. Multiple texts should be separated by spaces.",
)
args = parser.parse_args()
torch_output, torch_pooled = run_torch(args.bert_model, args.text)
mlx_output, mlx_pooled = model.run(args.bert_model, args.mlx_model, args.text)
if torch_pooled is not None and mlx_pooled is not None:
assert np.allclose(
torch_output, mlx_output, rtol=1e-4, atol=1e-5
), "Model output is different"
assert np.allclose(
torch_pooled, mlx_pooled, rtol=1e-4, atol=1e-5
), "Model pooled output is different"
print("Tests pass :)")
else:
print("Pooled outputs were not compared due to one or both being None.")