mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 17:31:18 +08:00
commit
46c6bbe0a1
78
bert/README.md
Normal file
78
bert/README.md
Normal file
@ -0,0 +1,78 @@
|
|||||||
|
# BERT
|
||||||
|
|
||||||
|
An implementation of BERT [(Devlin, et al., 2019)](https://aclanthology.org/N19-1423/) within MLX.
|
||||||
|
|
||||||
|
## Downloading and Converting Weights
|
||||||
|
|
||||||
|
The `convert.py` script relies on `transformers` to download the weights, and exports them as a single `.npz` file.
|
||||||
|
|
||||||
|
```
|
||||||
|
python convert.py \
|
||||||
|
--bert-model bert-base-uncased
|
||||||
|
--mlx-model weights/bert-base-uncased.npz
|
||||||
|
```
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
To use the `Bert` model in your own code, you can load it with:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from model import Bert, load_model
|
||||||
|
|
||||||
|
model, tokenizer = load_model(
|
||||||
|
"bert-base-uncased",
|
||||||
|
"weights/bert-base-uncased.npz")
|
||||||
|
|
||||||
|
batch = ["This is an example of BERT working on MLX."]
|
||||||
|
tokens = tokenizer(batch, return_tensors="np", padding=True)
|
||||||
|
tokens = {key: mx.array(v) for key, v in tokens.items()}
|
||||||
|
|
||||||
|
output, pooled = model(**tokens)
|
||||||
|
```
|
||||||
|
|
||||||
|
The `output` contains a `Batch x Tokens x Dims` tensor, representing a vector for every input token.
|
||||||
|
If you want to train anything at a **token-level**, you'll want to use this.
|
||||||
|
|
||||||
|
The `pooled` contains a `Batch x Dims` tensor, which is the pooled representation for each input.
|
||||||
|
If you want to train a **classification** model, you'll want to use this.
|
||||||
|
|
||||||
|
## Comparison with 🤗 `transformers` Implementation
|
||||||
|
|
||||||
|
In order to run the model, and have it forward inference on a batch of examples:
|
||||||
|
|
||||||
|
```sh
|
||||||
|
python model.py \
|
||||||
|
--bert-model bert-base-uncased \
|
||||||
|
--mlx-model weights/bert-base-uncased.npz
|
||||||
|
```
|
||||||
|
|
||||||
|
Which will show the following outputs:
|
||||||
|
```
|
||||||
|
MLX BERT:
|
||||||
|
[[[-0.52508914 -0.1993871 -0.28210318 ... -0.61125606 0.19114694
|
||||||
|
0.8227601 ]
|
||||||
|
[-0.8783862 -0.37107834 -0.52238125 ... -0.5067165 1.0847603
|
||||||
|
0.31066895]
|
||||||
|
[-0.70010054 -0.5424497 -0.26593682 ... -0.2688697 0.38338926
|
||||||
|
0.6557663 ]
|
||||||
|
...
|
||||||
|
```
|
||||||
|
|
||||||
|
They can be compared against the 🤗 implementation with:
|
||||||
|
|
||||||
|
```sh
|
||||||
|
python hf_model.py \
|
||||||
|
--bert-model bert-base-uncased
|
||||||
|
```
|
||||||
|
|
||||||
|
Which will show:
|
||||||
|
```
|
||||||
|
HF BERT:
|
||||||
|
[[[-0.52508944 -0.1993877 -0.28210333 ... -0.6112575 0.19114678
|
||||||
|
0.8227603 ]
|
||||||
|
[-0.878387 -0.371079 -0.522381 ... -0.50671494 1.0847601
|
||||||
|
0.31066933]
|
||||||
|
[-0.7001008 -0.5424504 -0.26593733 ... -0.26887015 0.38339025
|
||||||
|
0.65576553]
|
||||||
|
...
|
||||||
|
```
|
47
bert/convert.py
Normal file
47
bert/convert.py
Normal file
@ -0,0 +1,47 @@
|
|||||||
|
from transformers import BertModel
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import numpy
|
||||||
|
|
||||||
|
|
||||||
|
def replace_key(key: str) -> str:
|
||||||
|
key = key.replace(".layer.", ".layers.")
|
||||||
|
key = key.replace(".self.key.", ".key_proj.")
|
||||||
|
key = key.replace(".self.query.", ".query_proj.")
|
||||||
|
key = key.replace(".self.value.", ".value_proj.")
|
||||||
|
key = key.replace(".attention.output.dense.", ".attention.out_proj.")
|
||||||
|
key = key.replace(".attention.output.LayerNorm.", ".ln1.")
|
||||||
|
key = key.replace(".output.LayerNorm.", ".ln2.")
|
||||||
|
key = key.replace(".intermediate.dense.", ".linear1.")
|
||||||
|
key = key.replace(".output.dense.", ".linear2.")
|
||||||
|
key = key.replace(".LayerNorm.", ".norm.")
|
||||||
|
key = key.replace("pooler.dense.", "pooler.")
|
||||||
|
return key
|
||||||
|
|
||||||
|
|
||||||
|
def convert(bert_model: str, mlx_model: str) -> None:
|
||||||
|
model = BertModel.from_pretrained(bert_model)
|
||||||
|
# save the tensors
|
||||||
|
tensors = {
|
||||||
|
replace_key(key): tensor.numpy() for key, tensor in model.state_dict().items()
|
||||||
|
}
|
||||||
|
numpy.savez(mlx_model, **tensors)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser(description="Convert BERT weights to MLX.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--bert-model",
|
||||||
|
choices=["bert-base-uncased", "bert-base-cased", "bert-large-uncased", "bert-large-cased"],
|
||||||
|
default="bert-base-uncased",
|
||||||
|
help="The huggingface name of the BERT model to save.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--mlx-model",
|
||||||
|
type=str,
|
||||||
|
default="weights/bert-base-uncased.npz",
|
||||||
|
help="The output path for the MLX BERT weights.",
|
||||||
|
)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
convert(args.bert_model, args.mlx_model)
|
36
bert/hf_model.py
Normal file
36
bert/hf_model.py
Normal file
@ -0,0 +1,36 @@
|
|||||||
|
from transformers import AutoModel, AutoTokenizer
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
|
||||||
|
def run(bert_model: str):
|
||||||
|
batch = [
|
||||||
|
"This is an example of BERT working on MLX.",
|
||||||
|
"A second string",
|
||||||
|
"This is another string.",
|
||||||
|
]
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(bert_model)
|
||||||
|
torch_model = AutoModel.from_pretrained(bert_model)
|
||||||
|
torch_tokens = tokenizer(batch, return_tensors="pt", padding=True)
|
||||||
|
torch_forward = torch_model(**torch_tokens)
|
||||||
|
torch_output = torch_forward.last_hidden_state.detach().numpy()
|
||||||
|
torch_pooled = torch_forward.pooler_output.detach().numpy()
|
||||||
|
|
||||||
|
print("\n HF BERT:")
|
||||||
|
print(torch_output)
|
||||||
|
print("\n\n HF Pooled:")
|
||||||
|
print(torch_pooled[0, :20])
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser(description="Run the BERT model using HuggingFace Transformers.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--bert-model",
|
||||||
|
choices=["bert-base-uncased", "bert-base-cased", "bert-large-uncased", "bert-large-cased"],
|
||||||
|
default="bert-base-uncased",
|
||||||
|
help="The huggingface name of the BERT model to save.",
|
||||||
|
)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
run(args.bert_model)
|
248
bert/model.py
Normal file
248
bert/model.py
Normal file
@ -0,0 +1,248 @@
|
|||||||
|
from typing import Optional
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from transformers import BertTokenizer
|
||||||
|
from mlx.utils import tree_unflatten
|
||||||
|
|
||||||
|
import mlx.core as mx
|
||||||
|
import mlx.nn as nn
|
||||||
|
import argparse
|
||||||
|
import numpy
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class ModelArgs:
|
||||||
|
intermediate_size: int = 768
|
||||||
|
num_attention_heads: int = 12
|
||||||
|
num_hidden_layers: int = 12
|
||||||
|
vocab_size: int = 30522
|
||||||
|
attention_probs_dropout_prob: float = 0.1
|
||||||
|
hidden_dropout_prob: float = 0.1
|
||||||
|
layer_norm_eps: float = 1e-12
|
||||||
|
max_position_embeddings: int = 512
|
||||||
|
|
||||||
|
|
||||||
|
model_configs = {
|
||||||
|
"bert-base-uncased": ModelArgs(),
|
||||||
|
"bert-base-cased": ModelArgs(),
|
||||||
|
"bert-large-uncased": ModelArgs(
|
||||||
|
intermediate_size=1024, num_attention_heads=16, num_hidden_layers=24
|
||||||
|
),
|
||||||
|
"bert-large-cased": ModelArgs(
|
||||||
|
intermediate_size=1024, num_attention_heads=16, num_hidden_layers=24
|
||||||
|
),
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class MultiHeadAttention(nn.Module):
|
||||||
|
"""
|
||||||
|
Minor update to the MultiHeadAttention module to ensure that the
|
||||||
|
projections use bias.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
dims: int,
|
||||||
|
num_heads: int,
|
||||||
|
query_input_dims: Optional[int] = None,
|
||||||
|
key_input_dims: Optional[int] = None,
|
||||||
|
value_input_dims: Optional[int] = None,
|
||||||
|
value_dims: Optional[int] = None,
|
||||||
|
value_output_dims: Optional[int] = None,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
if (dims % num_heads) != 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"The input feature dimensions should be divisible by the number of heads ({dims} % {num_heads}) != 0"
|
||||||
|
)
|
||||||
|
|
||||||
|
query_input_dims = query_input_dims or dims
|
||||||
|
key_input_dims = key_input_dims or dims
|
||||||
|
value_input_dims = value_input_dims or key_input_dims
|
||||||
|
value_dims = value_dims or dims
|
||||||
|
value_output_dims = value_output_dims or dims
|
||||||
|
|
||||||
|
self.num_heads = num_heads
|
||||||
|
self.query_proj = nn.Linear(query_input_dims, dims, True)
|
||||||
|
self.key_proj = nn.Linear(key_input_dims, dims, True)
|
||||||
|
self.value_proj = nn.Linear(value_input_dims, value_dims, True)
|
||||||
|
self.out_proj = nn.Linear(value_dims, value_output_dims, True)
|
||||||
|
|
||||||
|
def __call__(self, queries, keys, values, mask=None):
|
||||||
|
queries = self.query_proj(queries)
|
||||||
|
keys = self.key_proj(keys)
|
||||||
|
values = self.value_proj(values)
|
||||||
|
|
||||||
|
num_heads = self.num_heads
|
||||||
|
B, L, D = queries.shape
|
||||||
|
_, S, _ = keys.shape
|
||||||
|
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
||||||
|
keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 3, 1)
|
||||||
|
values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
|
||||||
|
|
||||||
|
# Dimensions are [batch x num heads x sequence x hidden dim]
|
||||||
|
scale = math.sqrt(1 / queries.shape[-1])
|
||||||
|
scores = (queries * scale) @ keys
|
||||||
|
if mask is not None:
|
||||||
|
mask = self.convert_mask_to_additive_causal_mask(mask)
|
||||||
|
mask = mx.expand_dims(mask, (1, 2))
|
||||||
|
mask = mx.broadcast_to(mask, scores.shape)
|
||||||
|
scores = scores + mask.astype(scores.dtype)
|
||||||
|
scores = mx.softmax(scores, axis=-1)
|
||||||
|
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||||
|
|
||||||
|
return self.out_proj(values_hat)
|
||||||
|
|
||||||
|
def convert_mask_to_additive_causal_mask(
|
||||||
|
self, mask: mx.array, dtype: mx.Dtype = mx.float32
|
||||||
|
) -> mx.array:
|
||||||
|
mask = mask == 0
|
||||||
|
mask = mask.astype(dtype) * -1e9
|
||||||
|
return mask
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerEncoderLayer(nn.Module):
|
||||||
|
"""
|
||||||
|
A transformer encoder layer with (the original BERT) post-normalization.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
dims: int,
|
||||||
|
num_heads: int,
|
||||||
|
mlp_dims: Optional[int] = None,
|
||||||
|
layer_norm_eps: float = 1e-12,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
mlp_dims = mlp_dims or dims * 4
|
||||||
|
self.attention = MultiHeadAttention(dims, num_heads)
|
||||||
|
self.ln1 = nn.LayerNorm(dims, eps=layer_norm_eps)
|
||||||
|
self.ln2 = nn.LayerNorm(dims, eps=layer_norm_eps)
|
||||||
|
self.linear1 = nn.Linear(dims, mlp_dims)
|
||||||
|
self.linear2 = nn.Linear(mlp_dims, dims)
|
||||||
|
self.gelu = nn.GELU()
|
||||||
|
|
||||||
|
def __call__(self, x, mask):
|
||||||
|
attention_out = self.attention(x, x, x, mask)
|
||||||
|
add_and_norm = self.ln1(x + attention_out)
|
||||||
|
|
||||||
|
ff = self.linear1(add_and_norm)
|
||||||
|
ff_gelu = self.gelu(ff)
|
||||||
|
ff_out = self.linear2(ff_gelu)
|
||||||
|
x = self.ln2(ff_out + add_and_norm)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerEncoder(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self, num_layers: int, dims: int, num_heads: int, mlp_dims: Optional[int] = None
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.layers = [
|
||||||
|
TransformerEncoderLayer(dims, num_heads, mlp_dims)
|
||||||
|
for i in range(num_layers)
|
||||||
|
]
|
||||||
|
|
||||||
|
def __call__(self, x, mask):
|
||||||
|
for layer in self.layers:
|
||||||
|
x = layer(x, mask)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class BertEmbeddings(nn.Module):
|
||||||
|
def __init__(self, config: ModelArgs):
|
||||||
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.intermediate_size)
|
||||||
|
self.token_type_embeddings = nn.Embedding(2, config.intermediate_size)
|
||||||
|
self.position_embeddings = nn.Embedding(
|
||||||
|
config.max_position_embeddings, config.intermediate_size
|
||||||
|
)
|
||||||
|
self.norm = nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps)
|
||||||
|
|
||||||
|
def __call__(self, input_ids: mx.array, token_type_ids: mx.array) -> mx.array:
|
||||||
|
words = self.word_embeddings(input_ids)
|
||||||
|
position = self.position_embeddings(
|
||||||
|
mx.broadcast_to(mx.arange(input_ids.shape[1]), input_ids.shape)
|
||||||
|
)
|
||||||
|
token_types = self.token_type_embeddings(token_type_ids)
|
||||||
|
|
||||||
|
embeddings = position + words + token_types
|
||||||
|
return self.norm(embeddings)
|
||||||
|
|
||||||
|
|
||||||
|
class Bert(nn.Module):
|
||||||
|
def __init__(self, config: ModelArgs):
|
||||||
|
self.embeddings = BertEmbeddings(config)
|
||||||
|
self.encoder = TransformerEncoder(
|
||||||
|
num_layers=config.num_hidden_layers,
|
||||||
|
dims=config.intermediate_size,
|
||||||
|
num_heads=config.num_attention_heads,
|
||||||
|
)
|
||||||
|
self.pooler = nn.Linear(config.intermediate_size, config.vocab_size)
|
||||||
|
|
||||||
|
def __call__(
|
||||||
|
self,
|
||||||
|
input_ids: mx.array,
|
||||||
|
token_type_ids: mx.array,
|
||||||
|
attention_mask: Optional[mx.array] = None,
|
||||||
|
) -> tuple[mx.array, mx.array]:
|
||||||
|
x = self.embeddings(input_ids, token_type_ids)
|
||||||
|
y = self.encoder(x, attention_mask)
|
||||||
|
return y, mx.tanh(self.pooler(y[:, 0]))
|
||||||
|
|
||||||
|
|
||||||
|
def load_model(bert_model: str, weights_path: str) -> tuple[Bert, BertTokenizer]:
|
||||||
|
# load the weights npz
|
||||||
|
weights = mx.load(weights_path)
|
||||||
|
weights = tree_unflatten(list(weights.items()))
|
||||||
|
# create and update the model
|
||||||
|
model = Bert(model_configs[bert_model])
|
||||||
|
model.update(weights)
|
||||||
|
|
||||||
|
tokenizer = BertTokenizer.from_pretrained(bert_model)
|
||||||
|
|
||||||
|
return model, tokenizer
|
||||||
|
|
||||||
|
|
||||||
|
def run(bert_model: str, mlx_model: str):
|
||||||
|
model, tokenizer = load_model(bert_model, mlx_model)
|
||||||
|
|
||||||
|
batch = [
|
||||||
|
"This is an example of BERT working on MLX.",
|
||||||
|
"A second string",
|
||||||
|
"This is another string.",
|
||||||
|
]
|
||||||
|
|
||||||
|
tokens = tokenizer(batch, return_tensors="np", padding=True)
|
||||||
|
tokens = {key: mx.array(v) for key, v in tokens.items()}
|
||||||
|
|
||||||
|
mlx_output, mlx_pooled = model(**tokens)
|
||||||
|
mlx_output = numpy.array(mlx_output)
|
||||||
|
mlx_pooled = numpy.array(mlx_pooled)
|
||||||
|
|
||||||
|
print("MLX BERT:")
|
||||||
|
print(mlx_output)
|
||||||
|
|
||||||
|
print("\n\nMLX Pooled:")
|
||||||
|
print(mlx_pooled[0, :20])
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser(description="Run the BERT model using MLX.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--bert-model",
|
||||||
|
type=str,
|
||||||
|
default="bert-base-uncased",
|
||||||
|
help="The huggingface name of the BERT model to save.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--mlx-model",
|
||||||
|
type=str,
|
||||||
|
default="weights/bert-base-uncased.npz",
|
||||||
|
help="The path of the stored MLX BERT weights (npz file).",
|
||||||
|
)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
run(args.bert_model, args.mlx_model)
|
3
bert/requirements.txt
Normal file
3
bert/requirements.txt
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
mlx
|
||||||
|
transformers
|
||||||
|
numpy
|
1
bert/weights/.gitignore
vendored
Normal file
1
bert/weights/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
|||||||
|
*.npz
|
Loading…
Reference in New Issue
Block a user