mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-30 19:06:37 +08:00
Merge branch 'ml-explore:main' into main
This commit is contained in:
commit
47b0685c79
@ -9,9 +9,12 @@ Some more useful examples include:
|
||||
|
||||
- [Transformer language model](transformer_lm) training.
|
||||
- Large scale text generation with [LLaMA](llama) or [Mistral](mistral).
|
||||
- Mixture-of-experts (MoE) language model with [Mixtral 8x7B](mixtral)
|
||||
- Parameter efficient fine-tuning with [LoRA](lora).
|
||||
- Generating images with [Stable Diffusion](stable_diffusion).
|
||||
- Speech recognition with [OpenAI's Whisper](whisper).
|
||||
- Bidirectional language understanding with [BERT](bert)
|
||||
- Semi-supervised learning on graph-structured data with [GCN](gcn).
|
||||
|
||||
## Contributing
|
||||
|
||||
|
@ -25,7 +25,7 @@ def run(bert_model: str):
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Run the BERT model using HuggingFace Transformers."
|
||||
description="Run the BERT model using Hugging Face Transformers."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--bert-model",
|
||||
|
@ -1,8 +1,9 @@
|
||||
# LLaMA
|
||||
# Llama
|
||||
|
||||
An example of generating text with LLaMA using MLX.
|
||||
An example of generating text with Llama (1 or 2) using MLX.
|
||||
|
||||
LLaMA is a set of open source language models from Meta AI Research[^1] ranging from 7B to 65B parameters.
|
||||
Llama is a set of open source language models from Meta AI Research[^1][^2]
|
||||
ranging from 7B to 70B parameters.
|
||||
|
||||
### Setup
|
||||
|
||||
@ -13,28 +14,34 @@ pip install -r requirements.txt
|
||||
```
|
||||
|
||||
Next, download and convert the model. If you do not have access to the model
|
||||
weights you will need to [request
|
||||
access](https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform)
|
||||
from Meta.
|
||||
weights you will need to request access from Meta:
|
||||
|
||||
- [Request Llama v1](https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform)
|
||||
- [Request Llama v2](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
|
||||
|
||||
|
||||
Alternatively, you can also download a select converted checkpoints from the [mlx-llama](https://huggingface.co/mlx-llama) community organisation on Hugging Face and skip the conversion step.
|
||||
Alternatively, you can also download a select converted checkpoints from the
|
||||
[mlx-llama](https://huggingface.co/mlx-llama) community organisation on Hugging
|
||||
Face and skip the conversion step.
|
||||
|
||||
Convert the weights with:
|
||||
|
||||
```
|
||||
python convert.py <path_to_torch_weights> <path_to_mlx_llama_weights.npz>
|
||||
python convert.py --model_path <path_to_torch_model>
|
||||
```
|
||||
|
||||
The conversion script will save the converted weights in the same location.
|
||||
|
||||
### Run
|
||||
|
||||
Once you've converted the weights to MLX format, you can interact with the
|
||||
LLaMA model:
|
||||
LlaMA model:
|
||||
|
||||
```
|
||||
python llama.py <path_to_mlx_llama_weights.npz> <path_to_tokenizer.model> "hello"
|
||||
python llama.py <path_to_model> <path_to_tokenizer.model> "hello"
|
||||
```
|
||||
|
||||
Run `python llama.py --help` for more details.
|
||||
|
||||
[^1]: Refer to the [arXiv paper](https://arxiv.org/abs/2302.13971) and [blog post](https://ai.meta.com/blog/large-language-model-llama-meta-ai/) for more details.
|
||||
[^1]: For Llama v1 refer to the [arXiv paper](https://arxiv.org/abs/2302.13971) and [blog post](https://ai.meta.com/blog/large-language-model-llama-meta-ai/) for more details.
|
||||
[^2]: For Llama v2 refer to the [blob post](https://ai.meta.com/llama/)
|
||||
|
@ -1,53 +1,59 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import argparse
|
||||
from itertools import starmap
|
||||
import collections
|
||||
import glob
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
SHARD_FIRST = ["wv", "wq", "wk", "w1", "w3", "output"]
|
||||
SHARD_SECOND = ["tok_embeddings", "wo", "w2"]
|
||||
SHARD_WEIGHTS = set(SHARD_FIRST + SHARD_SECOND)
|
||||
|
||||
def map_torch_to_mlx(key, value):
|
||||
if "tok_embedding" in key:
|
||||
key = "embedding.weight"
|
||||
|
||||
elif "norm" in key:
|
||||
key = key.replace("attention_norm", "norm1").replace("ffn_norm", "norm2")
|
||||
def shard_key(k):
|
||||
keys = k.split(".")
|
||||
if len(keys) < 2:
|
||||
return None
|
||||
return keys[-2]
|
||||
|
||||
elif "wq" in key or "wk" in key or "wv" in key or "wo" in key:
|
||||
key = key.replace("wq", "query_proj")
|
||||
key = key.replace("wk", "key_proj")
|
||||
key = key.replace("wv", "value_proj")
|
||||
key = key.replace("wo", "out_proj")
|
||||
|
||||
elif "w1" in key or "w2" in key or "w3" in key:
|
||||
# The FFN is a separate submodule in PyTorch
|
||||
key = key.replace("feed_forward.w1", "linear1")
|
||||
key = key.replace("feed_forward.w3", "linear2")
|
||||
key = key.replace("feed_forward.w2", "linear3")
|
||||
|
||||
elif "output" in key:
|
||||
key = key.replace("output", "out_proj")
|
||||
|
||||
elif "rope" in key:
|
||||
return None, None
|
||||
|
||||
return (
|
||||
key,
|
||||
value.numpy()
|
||||
if value.dtype != torch.bfloat16
|
||||
else value.to(torch.float32).numpy(),
|
||||
)
|
||||
def unshard(k, v):
|
||||
wn = shard_key(k)
|
||||
if wn not in SHARD_WEIGHTS:
|
||||
return v
|
||||
elif wn in SHARD_FIRST:
|
||||
axis = 0
|
||||
elif wn in SHARD_SECOND:
|
||||
axis = 1
|
||||
else:
|
||||
raise ValueError("Invalid weight name")
|
||||
return np.concatenate(v, axis=axis)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Convert Llama weights to MLX")
|
||||
parser.add_argument("torch_weights")
|
||||
parser.add_argument("output_file")
|
||||
parser.add_argument(
|
||||
"--model_path",
|
||||
help="Path to the Torch model. The MLX weights will also be saved there.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
state = torch.load(args.torch_weights, map_location=torch.device('cpu'))
|
||||
np.savez(
|
||||
args.output_file,
|
||||
**{k: v for k, v in starmap(map_torch_to_mlx, state.items()) if k is not None}
|
||||
)
|
||||
model_path = Path(args.model_path)
|
||||
torch_files = glob.glob(str(model_path / "consolidated.*.pth"))
|
||||
weights = collections.defaultdict(list)
|
||||
for wf in torch_files:
|
||||
state = torch.load(wf, map_location=torch.device("cpu"))
|
||||
for k, v in state.items():
|
||||
v = v.to(torch.float16).numpy()
|
||||
if shard_key(k) in SHARD_WEIGHTS:
|
||||
weights[k].append(v)
|
||||
else:
|
||||
weights[k] = v
|
||||
|
||||
out_file = str(model_path / "weights.npz")
|
||||
for k, v in weights.items():
|
||||
weights[k] = unshard(k, v)
|
||||
np.savez(out_file, **weights)
|
||||
|
206
llama/llama.py
206
llama/llama.py
@ -1,8 +1,10 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import argparse
|
||||
import math
|
||||
import numpy as np
|
||||
from dataclasses import dataclass
|
||||
import json
|
||||
from pathlib import Path
|
||||
from typing import Optional, Tuple, List
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
import time
|
||||
|
||||
@ -11,33 +13,71 @@ import mlx.nn as nn
|
||||
from mlx.utils import tree_unflatten
|
||||
|
||||
|
||||
class LlamaAttention(nn.Module):
|
||||
def __init__(self, dims: int, num_heads: int):
|
||||
@dataclass
|
||||
class ModelArgs:
|
||||
dim: int
|
||||
n_layers: int
|
||||
head_dim: int
|
||||
hidden_dim: int
|
||||
n_heads: int
|
||||
n_kv_heads: int
|
||||
norm_eps: float
|
||||
vocab_size: int
|
||||
|
||||
|
||||
class RMSNorm(nn.Module):
|
||||
def __init__(self, dims: int, eps: float = 1e-5):
|
||||
super().__init__()
|
||||
self.weight = mx.ones((dims,))
|
||||
self.eps = eps
|
||||
|
||||
self.num_heads = num_heads
|
||||
def _norm(self, x):
|
||||
return x * mx.rsqrt(x.square().mean(-1, keepdims=True) + self.eps)
|
||||
|
||||
self.rope = nn.RoPE(dims // num_heads, traditional=True)
|
||||
self.query_proj = nn.Linear(dims, dims, bias=False)
|
||||
self.key_proj = nn.Linear(dims, dims, bias=False)
|
||||
self.value_proj = nn.Linear(dims, dims, bias=False)
|
||||
self.out_proj = nn.Linear(dims, dims, bias=False)
|
||||
def __call__(self, x):
|
||||
output = self._norm(x.astype(mx.float32)).astype(x.dtype)
|
||||
return self.weight * output
|
||||
|
||||
def __call__(self, queries, keys, values, mask=None, cache=None):
|
||||
queries = self.query_proj(queries)
|
||||
keys = self.key_proj(keys)
|
||||
values = self.value_proj(values)
|
||||
|
||||
# Extract some shapes
|
||||
num_heads = self.num_heads
|
||||
B, L, D = queries.shape
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
|
||||
self.n_heads: int = args.n_heads
|
||||
self.n_kv_heads: int = args.n_kv_heads
|
||||
|
||||
self.repeats = self.n_heads // self.n_kv_heads
|
||||
|
||||
self.scale = self.args.head_dim**-0.5
|
||||
|
||||
self.wq = nn.Linear(args.dim, args.n_heads * args.head_dim, bias=False)
|
||||
self.wk = nn.Linear(args.dim, args.n_kv_heads * args.head_dim, bias=False)
|
||||
self.wv = nn.Linear(args.dim, args.n_kv_heads * args.head_dim, bias=False)
|
||||
self.wo = nn.Linear(args.n_heads * args.head_dim, args.dim, bias=False)
|
||||
self.rope = nn.RoPE(args.head_dim, traditional=True)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
) -> mx.array:
|
||||
B, L, D = x.shape
|
||||
|
||||
queries, keys, values = self.wq(x), self.wk(x), self.wv(x)
|
||||
|
||||
# Prepare the queries, keys and values for the attention computation
|
||||
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
||||
keys = keys.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
||||
values = values.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
||||
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||||
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||||
|
||||
def repeat(a):
|
||||
a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2)
|
||||
return a.reshape([B, self.n_heads, L, -1])
|
||||
|
||||
keys, values = map(repeat, (keys, values))
|
||||
|
||||
# Add RoPE to the queries and keys and combine them with the cache
|
||||
if cache is not None:
|
||||
key_cache, value_cache = cache
|
||||
queries = self.rope(queries, offset=key_cache.shape[2])
|
||||
@ -48,86 +88,87 @@ class LlamaAttention(nn.Module):
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
# Finally perform the attention computation
|
||||
scale = math.sqrt(1 / queries.shape[-1])
|
||||
scores = (queries * scale) @ keys.transpose(0, 1, 3, 2)
|
||||
scores = (queries * self.scale) @ keys.transpose(0, 1, 3, 2)
|
||||
if mask is not None:
|
||||
scores = scores + mask
|
||||
scores = mx.softmax(scores, axis=-1)
|
||||
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
|
||||
# Note that we return the keys and values to possibly be used as a cache
|
||||
return self.out_proj(values_hat), (keys, values)
|
||||
scores += mask
|
||||
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
|
||||
output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||||
return self.wo(output), (keys, values)
|
||||
|
||||
|
||||
class LlamaEncoderLayer(nn.Module):
|
||||
def __init__(self, dims: int, mlp_dims: int, num_heads: int):
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
|
||||
self.attention = LlamaAttention(dims, num_heads)
|
||||
self.w1 = nn.Linear(args.dim, args.hidden_dim, bias=False)
|
||||
self.w2 = nn.Linear(args.hidden_dim, args.dim, bias=False)
|
||||
self.w3 = nn.Linear(args.dim, args.hidden_dim, bias=False)
|
||||
|
||||
self.norm1 = nn.RMSNorm(dims)
|
||||
self.norm2 = nn.RMSNorm(dims)
|
||||
def __call__(self, x) -> mx.array:
|
||||
return self.w2(nn.silu(self.w1(x)) * self.w3(x))
|
||||
|
||||
self.linear1 = nn.Linear(dims, mlp_dims, bias=False)
|
||||
self.linear2 = nn.Linear(dims, mlp_dims, bias=False)
|
||||
self.linear3 = nn.Linear(mlp_dims, dims, bias=False)
|
||||
|
||||
def __call__(self, x, mask=None, cache=None):
|
||||
y = self.norm1(x)
|
||||
y, cache = self.attention(y, y, y, mask, cache)
|
||||
x = x + y
|
||||
class TransformerBlock(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.n_heads = args.n_heads
|
||||
self.dim = args.dim
|
||||
self.attention = Attention(args)
|
||||
self.feed_forward = FeedForward(args=args)
|
||||
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
||||
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
||||
self.args = args
|
||||
|
||||
y = self.norm2(x)
|
||||
a = self.linear1(y)
|
||||
b = self.linear2(y)
|
||||
y = a * mx.sigmoid(a) * b
|
||||
y = self.linear3(y)
|
||||
x = x + y
|
||||
|
||||
return x, cache
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
mask: Optional[mx.array] = None,
|
||||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||||
) -> mx.array:
|
||||
r, cache = self.attention(self.attention_norm(x), mask, cache)
|
||||
h = x + r
|
||||
r = self.feed_forward(self.ffn_norm(h))
|
||||
out = h + r
|
||||
return out, cache
|
||||
|
||||
|
||||
class Llama(nn.Module):
|
||||
def __init__(
|
||||
self, num_layers: int, vocab_size: int, dims: int, mlp_dims: int, num_heads: int
|
||||
):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
|
||||
self.embedding = nn.Embedding(vocab_size, dims)
|
||||
self.layers = [
|
||||
LlamaEncoderLayer(dims, mlp_dims, num_heads) for _ in range(num_layers)
|
||||
]
|
||||
self.norm = nn.RMSNorm(dims)
|
||||
self.out_proj = nn.Linear(dims, vocab_size, bias=False)
|
||||
self.args = args
|
||||
self.vocab_size = args.vocab_size
|
||||
self.tok_embeddings = nn.Embedding(args.vocab_size, args.dim)
|
||||
self.layers = [TransformerBlock(args=args) for _ in range(args.n_layers)]
|
||||
self.norm = RMSNorm(args.dim, eps=args.norm_eps)
|
||||
self.output = nn.Linear(args.dim, args.vocab_size, bias=False)
|
||||
|
||||
def __call__(self, x):
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
||||
mask = mask.astype(self.embedding.weight.dtype)
|
||||
mask = mask.astype(self.tok_embeddings.weight.dtype)
|
||||
|
||||
x = self.embedding(x)
|
||||
x = self.tok_embeddings(x)
|
||||
for l in self.layers:
|
||||
x, _ = l(x, mask)
|
||||
x = self.norm(x)
|
||||
return self.out_proj(x)
|
||||
return self.output(x)
|
||||
|
||||
def generate(self, x, temp=1.0):
|
||||
cache = []
|
||||
|
||||
# Make an additive causal mask. We will need that to process the prompt.
|
||||
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
||||
mask = mask.astype(self.embedding.weight.dtype)
|
||||
mask = mask.astype(self.tok_embeddings.weight.dtype)
|
||||
|
||||
# First we process the prompt x the same was as in __call__ but
|
||||
# save the caches in cache
|
||||
x = self.embedding(x)
|
||||
x = self.tok_embeddings(x)
|
||||
for l in self.layers:
|
||||
x, c = l(x, mask=mask)
|
||||
# We store the per layer cache in a simple python list
|
||||
cache.append(c)
|
||||
x = self.norm(x)
|
||||
# We only care about the last logits that generate the next token
|
||||
y = self.out_proj(x[:, -1])
|
||||
y = self.output(x[:, -1])
|
||||
y = mx.random.categorical(y * (1 / temp))
|
||||
|
||||
# y now has size [1]
|
||||
@ -145,14 +186,14 @@ class Llama(nn.Module):
|
||||
# dimension of 1
|
||||
x = y[:, None]
|
||||
|
||||
x = self.embedding(x)
|
||||
x = self.tok_embeddings(x)
|
||||
for i in range(len(cache)):
|
||||
# We are overwriting the arrays in the cache list. When
|
||||
# the computation will happen, MLX will be discarding the
|
||||
# old cache the moment it is not needed anymore.
|
||||
x, cache[i] = self.layers[i](x, mask=None, cache=cache[i])
|
||||
x = self.norm(x)
|
||||
y = self.out_proj(x[:, -1])
|
||||
y = self.output(x[:, -1])
|
||||
y = mx.random.categorical(y * (1 / temp))
|
||||
|
||||
yield y
|
||||
@ -261,20 +302,33 @@ def few_shot_generate(args):
|
||||
|
||||
|
||||
def load_model(model_path):
|
||||
weights = mx.load(model_path)
|
||||
mlp_dims, dims = weights["layers.0.linear1.weight"].shape
|
||||
num_heads = dims // 128
|
||||
num_layers = max(int(l.split(".")[1]) for l in weights.keys() if "layers" in l) + 1
|
||||
vocab_size = weights["out_proj.weight"].shape[-1]
|
||||
model = Llama(num_layers, vocab_size, dims, mlp_dims, num_heads)
|
||||
model_path = Path(model_path)
|
||||
weights = mx.load(str(model_path / "weights.npz"))
|
||||
with open(model_path / "params.json", "r") as f:
|
||||
config = json.loads(f.read())
|
||||
n_heads = config["n_heads"]
|
||||
if "n_kv_heads" not in config:
|
||||
config["n_kv_heads"] = n_heads
|
||||
if "head_dim" not in config:
|
||||
config["head_dim"] = config["dim"] // n_heads
|
||||
if "hidden_dim" not in config:
|
||||
config["hidden_dim"] = weights["layers.0.feed_forward.w1.weight"].shape[0]
|
||||
if config.get("vocab_size", -1) < 0:
|
||||
config["vocab_size"] = weights["output.weight"].shape[-1]
|
||||
unused = ["multiple_of", "ffn_dim_multiplie"]
|
||||
for k in unused:
|
||||
if k in config:
|
||||
config.pop(k)
|
||||
model = Llama(ModelArgs(**config))
|
||||
model.update(tree_unflatten(list(weights.items())))
|
||||
mx.eval(model.parameters())
|
||||
return model
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Llama inference script")
|
||||
parser.add_argument("model", help="The model file containing MLX weights")
|
||||
parser.add_argument(
|
||||
"model", help="Path to the model directory containing the MLX weights"
|
||||
)
|
||||
parser.add_argument("tokenizer", help="The sentencepiece tokenizer")
|
||||
parser.add_argument("prompt", help="The message to be processed by the model")
|
||||
parser.add_argument(
|
||||
|
@ -1,2 +1,3 @@
|
||||
mlx
|
||||
sentencepiece
|
||||
torch
|
||||
|
@ -14,7 +14,7 @@ For example with Homebrew:
|
||||
brew install git-lfs
|
||||
```
|
||||
|
||||
Download the models from HuggingFace:
|
||||
Download the models from Hugging Face:
|
||||
|
||||
```
|
||||
git clone https://huggingface.co/someone13574/mixtral-8x7b-32kseqlen
|
||||
@ -46,7 +46,7 @@ rm mixtral-8x7b-32kseqlen/*.pth*
|
||||
As easy as:
|
||||
|
||||
```
|
||||
python mixtral.py --model_path mixtral mixtral-8x7b-32kseqlen/
|
||||
python mixtral.py --model_path mixtral-8x7b-32kseqlen/
|
||||
```
|
||||
|
||||
[^mixtral]: Refer to Mistral's [blog post](https://mistral.ai/news/mixtral-of-experts/) for more details.
|
||||
|
@ -16,7 +16,7 @@ if __name__ == "__main__":
|
||||
)
|
||||
args = parser.parse_args()
|
||||
model_path = Path(args.model_path)
|
||||
state = torch.load(str(model_path / "consolidated.00.pt"))
|
||||
state = torch.load(str(model_path / "consolidated.00.pth"))
|
||||
np.savez(
|
||||
str(model_path / "weights.npz"),
|
||||
**{k: v.to(torch.float16).numpy() for k, v in state.items()},
|
||||
|
@ -1,9 +1,9 @@
|
||||
Stable Diffusion
|
||||
================
|
||||
|
||||
Stable Diffusion in MLX. The implementation was ported from Huggingface's
|
||||
Stable Diffusion in MLX. The implementation was ported from Hugging Face's
|
||||
[diffusers](https://huggingface.co/docs/diffusers/index) and we are fetching
|
||||
and using the weights available on the Huggingface Hub by Stability AI at
|
||||
and using the weights available on the Hugging Face Hub by Stability AI at
|
||||
[stabilitiai/stable-diffusion-2-1](https://huggingface.co/stabilityai/stable-diffusion-2-1).
|
||||
|
||||

|
||||
|
@ -193,7 +193,7 @@ def _check_key(key: str, part: str):
|
||||
|
||||
|
||||
def load_unet(key: str = _DEFAULT_MODEL, float16: bool = False):
|
||||
"""Load the stable diffusion UNet from Huggingface Hub."""
|
||||
"""Load the stable diffusion UNet from Hugging Face Hub."""
|
||||
_check_key(key, "load_unet")
|
||||
|
||||
# Download the config and create the model
|
||||
@ -223,7 +223,7 @@ def load_unet(key: str = _DEFAULT_MODEL, float16: bool = False):
|
||||
|
||||
|
||||
def load_text_encoder(key: str = _DEFAULT_MODEL, float16: bool = False):
|
||||
"""Load the stable diffusion text encoder from Huggingface Hub."""
|
||||
"""Load the stable diffusion text encoder from Hugging Face Hub."""
|
||||
_check_key(key, "load_text_encoder")
|
||||
|
||||
# Download the config and create the model
|
||||
@ -250,7 +250,7 @@ def load_text_encoder(key: str = _DEFAULT_MODEL, float16: bool = False):
|
||||
|
||||
|
||||
def load_autoencoder(key: str = _DEFAULT_MODEL, float16: bool = False):
|
||||
"""Load the stable diffusion autoencoder from Huggingface Hub."""
|
||||
"""Load the stable diffusion autoencoder from Hugging Face Hub."""
|
||||
_check_key(key, "load_autoencoder")
|
||||
|
||||
# Download the config and create the model
|
||||
@ -279,7 +279,7 @@ def load_autoencoder(key: str = _DEFAULT_MODEL, float16: bool = False):
|
||||
|
||||
|
||||
def load_diffusion_config(key: str = _DEFAULT_MODEL):
|
||||
"""Load the stable diffusion config from Huggingface Hub."""
|
||||
"""Load the stable diffusion config from Hugging Face Hub."""
|
||||
_check_key(key, "load_diffusion_config")
|
||||
|
||||
diffusion_config = _MODELS[key]["diffusion_config"]
|
||||
|
@ -81,7 +81,7 @@ class Tokenizer:
|
||||
if isinstance(text, list):
|
||||
return [self.tokenize(t, prepend_bos, append_eos) for t in text]
|
||||
|
||||
# Lower case cleanup and split according to self.pat. Huggingface does
|
||||
# Lower case cleanup and split according to self.pat. Hugging Face does
|
||||
# a much more thorough job here but this should suffice for 95% of
|
||||
# cases.
|
||||
clean_text = regex.sub(r"\s+", " ", text.lower())
|
||||
|
@ -57,12 +57,13 @@ if __name__ == "__main__":
|
||||
if sys.argv[1] == "--all":
|
||||
models = ["tiny", "small", "medium", "large"]
|
||||
|
||||
feat_time = timer(feats)
|
||||
print(f"\nFeature time {feat_time:.3f}")
|
||||
mels = feats()[None].astype(mx.float16)
|
||||
|
||||
for model_name in models:
|
||||
feat_time = timer(feats)
|
||||
|
||||
print(f"\nModel: {model_name.upper()}")
|
||||
print(f"\nFeature time {feat_time:.3f}")
|
||||
mels = feats()[None]
|
||||
tokens = mx.array(
|
||||
[
|
||||
50364,
|
||||
@ -96,7 +97,7 @@ if __name__ == "__main__":
|
||||
],
|
||||
mx.int32,
|
||||
)[None]
|
||||
model = load_models.load_model(f"{model_name}")
|
||||
model = load_models.load_model(f"{model_name}", dtype=mx.float16)
|
||||
model_forward_time = timer(model_forward, model, mels, tokens)
|
||||
print(f"Model forward time {model_forward_time:.3f}")
|
||||
decode_time = timer(decode, model, mels)
|
||||
|
@ -36,7 +36,7 @@ def forward_mlx(model, mels, tokens):
|
||||
class TestWhisper(unittest.TestCase):
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
cls.model = load_models.load_model("tiny")
|
||||
cls.model = load_models.load_model("tiny", dtype=mx.float32)
|
||||
data = audio.load_audio(TEST_AUDIO)
|
||||
data = audio.pad_or_trim(data)
|
||||
cls.mels = audio.log_mel_spectrogram(data)
|
||||
@ -52,13 +52,22 @@ class TestWhisper(unittest.TestCase):
|
||||
|
||||
torch_logits = forward_torch(torch_model, mels, tokens)
|
||||
|
||||
mlx_model = load_models.torch_to_mlx(torch_model)
|
||||
mlx_model = load_models.torch_to_mlx(torch_model, mx.float32)
|
||||
mlx_logits = forward_mlx(mlx_model, mels, tokens)
|
||||
|
||||
self.assertTrue(np.allclose(torch_logits, mlx_logits, atol=1e-2, rtol=1e-2))
|
||||
|
||||
def test_fp16(self):
|
||||
mlx_model = load_models.load_model("tiny", dtype=mx.float16)
|
||||
dims = mlx_model.dims
|
||||
mels = mx.array(np.random.randn(1, 3_000, dims.n_mels), mx.float16)
|
||||
tokens = mx.array(np.random.randint(0, dims.n_vocab, (1, 20)), mx.int32)
|
||||
logits = mlx_model(mels, tokens)
|
||||
self.assertEqual(logits.dtype, mx.float16)
|
||||
|
||||
|
||||
def test_decode_lang(self):
|
||||
options = decoding.DecodingOptions(task="lang_id")
|
||||
options = decoding.DecodingOptions(task="lang_id", fp16=False)
|
||||
result = decoding.decode(self.model, self.mels, options)
|
||||
self.assertEqual(result.language, "en")
|
||||
self.assertEqual(len(result.language_probs), 99)
|
||||
@ -67,7 +76,7 @@ class TestWhisper(unittest.TestCase):
|
||||
)
|
||||
|
||||
def test_decode_greedy(self):
|
||||
result = decoding.decode(self.model, self.mels)
|
||||
result = decoding.decode(self.model, self.mels, fp16=False)
|
||||
self.assertEqual(result.language, "en")
|
||||
self.assertEqual(
|
||||
result.tokens,
|
||||
@ -114,7 +123,7 @@ class TestWhisper(unittest.TestCase):
|
||||
self.assertAlmostEqual(result.compression_ratio, 1.2359550561797752)
|
||||
|
||||
# Small temp should give the same results
|
||||
result = decoding.decode(self.model, self.mels, temperature=1e-8)
|
||||
result = decoding.decode(self.model, self.mels, temperature=1e-8, fp16=False)
|
||||
|
||||
self.assertEqual(
|
||||
result.text,
|
||||
@ -128,7 +137,7 @@ class TestWhisper(unittest.TestCase):
|
||||
self.assertAlmostEqual(result.compression_ratio, 1.2359550561797752)
|
||||
|
||||
def test_transcribe(self):
|
||||
result = whisper.transcribe(TEST_AUDIO)
|
||||
result = whisper.transcribe(TEST_AUDIO, fp16=False)
|
||||
self.assertEqual(
|
||||
result["text"],
|
||||
(
|
||||
@ -147,7 +156,7 @@ class TestWhisper(unittest.TestCase):
|
||||
print("bash path_to_whisper_repo/whisper/assets/download_alice.sh")
|
||||
return
|
||||
|
||||
result = whisper.transcribe(audio_file)
|
||||
result = whisper.transcribe(audio_file, fp16=False)
|
||||
self.assertEqual(len(result["text"]), 10920)
|
||||
self.assertEqual(result["language"], "en")
|
||||
self.assertEqual(len(result["segments"]), 77)
|
||||
|
Binary file not shown.
@ -11,7 +11,6 @@ import numpy as np
|
||||
# hard-coded audio hyperparameters
|
||||
SAMPLE_RATE = 16000
|
||||
N_FFT = 400
|
||||
N_MELS = 80
|
||||
HOP_LENGTH = 160
|
||||
CHUNK_LENGTH = 30
|
||||
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000 samples in a 30-second chunk
|
||||
@ -81,7 +80,7 @@ def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
|
||||
|
||||
|
||||
@lru_cache(maxsize=None)
|
||||
def mel_filters(n_mels: int = N_MELS) -> mx.array:
|
||||
def mel_filters(n_mels: int) -> mx.array:
|
||||
"""
|
||||
load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
|
||||
Allows decoupling librosa dependency; saved using:
|
||||
@ -89,9 +88,10 @@ def mel_filters(n_mels: int = N_MELS) -> mx.array:
|
||||
np.savez_compressed(
|
||||
"mel_filters.npz",
|
||||
mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
|
||||
mel_128=librosa.filters.mel(sr=16000, n_fft=400, n_mels=128),
|
||||
)
|
||||
"""
|
||||
assert n_mels == 80, f"Unsupported n_mels: {n_mels}"
|
||||
assert n_mels in {80, 128}, f"Unsupported n_mels: {n_mels}"
|
||||
|
||||
filename = os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz")
|
||||
return mx.load(filename)[f"mel_{n_mels}"]
|
||||
@ -130,7 +130,7 @@ def stft(x, window, nperseg=256, noverlap=None, nfft=None, axis=-1, pad_mode="re
|
||||
|
||||
def log_mel_spectrogram(
|
||||
audio: Union[str, np.ndarray],
|
||||
n_mels: int = N_MELS,
|
||||
n_mels: int = 80,
|
||||
padding: int = 0,
|
||||
):
|
||||
"""
|
||||
|
@ -33,7 +33,9 @@ def detect_language(
|
||||
list of dictionaries containing the probability distribution over all languages.
|
||||
"""
|
||||
if tokenizer is None:
|
||||
tokenizer = get_tokenizer(model.is_multilingual)
|
||||
tokenizer = get_tokenizer(
|
||||
model.is_multilingual, num_languages=model.num_languages
|
||||
)
|
||||
if (
|
||||
tokenizer.language is None
|
||||
or tokenizer.language_token not in tokenizer.sot_sequence
|
||||
@ -110,7 +112,7 @@ class DecodingOptions:
|
||||
max_initial_timestamp: Optional[float] = 1.0
|
||||
|
||||
# implementation details
|
||||
fp16: bool = False # use fp16 for most of the calculation
|
||||
fp16: bool = True # use fp16 for most of the calculation
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
@ -141,7 +143,7 @@ class Inference:
|
||||
logits, self.kv_cache = self.model.decoder(
|
||||
tokens, audio_features, kv_cache=self.kv_cache
|
||||
)
|
||||
return logits
|
||||
return logits.astype(mx.float32)
|
||||
|
||||
def rearrange_kv_cache(self, source_indices):
|
||||
"""Update the key-value cache according to the updated beams"""
|
||||
@ -401,7 +403,10 @@ class DecodingTask:
|
||||
|
||||
language = options.language or "en"
|
||||
tokenizer = get_tokenizer(
|
||||
model.is_multilingual, language=language, task=options.task
|
||||
model.is_multilingual,
|
||||
num_languages=model.num_languages,
|
||||
language=language,
|
||||
task=options.task,
|
||||
)
|
||||
self.tokenizer: Tokenizer = tokenizer
|
||||
self.options: DecodingOptions = self._verify_options(options)
|
||||
@ -542,7 +547,7 @@ class DecodingTask:
|
||||
audio_features = self.model.encoder(mel)
|
||||
|
||||
if audio_features.dtype != (mx.float16 if self.options.fp16 else mx.float32):
|
||||
return TypeError(
|
||||
raise TypeError(
|
||||
f"audio_features has an incorrect dtype: {audio_features.dtype}"
|
||||
)
|
||||
|
||||
|
@ -7,6 +7,7 @@ import warnings
|
||||
from typing import List
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx.utils import tree_map
|
||||
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
@ -25,7 +26,8 @@ _MODELS = {
|
||||
"medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt",
|
||||
"large-v1": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large-v1.pt",
|
||||
"large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt",
|
||||
"large": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt",
|
||||
"large-v3": "https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt",
|
||||
"large": "https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt",
|
||||
}
|
||||
|
||||
# base85-encoded (n_layers, n_heads) boolean arrays indicating the cross-attention heads that are
|
||||
@ -41,7 +43,8 @@ _ALIGNMENT_HEADS = {
|
||||
"medium": b"ABzY8B0Jh+0{>%R7}kK1fFL7w6%<-Pf*t^=N)Qr&0RR9",
|
||||
"large-v1": b"ABzY8r9j$a0{>%R7#4sLmoOs{s)o3~84-RPdcFk!JR<kSfC2yj",
|
||||
"large-v2": b"ABzY8zd+h!0{>%R7=D0pU<_bnWW*tkYAhobTNnu$jnkEkXqp)j;w1Tzk)UH3X%SZd&fFZ2fC2yj",
|
||||
"large": b"ABzY8zd+h!0{>%R7=D0pU<_bnWW*tkYAhobTNnu$jnkEkXqp)j;w1Tzk)UH3X%SZd&fFZ2fC2yj",
|
||||
"large-v3": b"ABzY8gWO1E0{>%R7(9S+Kn!D~%ngiGaR?*L!iJG9p-nab0JQ=-{D1-g00",
|
||||
"large": b"ABzY8gWO1E0{>%R7(9S+Kn!D~%ngiGaR?*L!iJG9p-nab0JQ=-{D1-g00"
|
||||
}
|
||||
|
||||
|
||||
@ -163,7 +166,7 @@ def convert(model, rules=None):
|
||||
|
||||
|
||||
def torch_to_mlx(
|
||||
torch_model: torch_whisper.Whisper,
|
||||
torch_model: torch_whisper.Whisper, dtype: mx.Dtype = mx.float16,
|
||||
) -> whisper.Whisper:
|
||||
def convert_rblock(model, rules):
|
||||
children = dict(model.named_children())
|
||||
@ -182,7 +185,8 @@ def torch_to_mlx(
|
||||
|
||||
params = convert(torch_model, rules)
|
||||
|
||||
mlx_model = whisper.Whisper(torch_model.dims)
|
||||
mlx_model = whisper.Whisper(torch_model.dims, dtype)
|
||||
params = tree_map(lambda p: p.astype(dtype), params)
|
||||
mlx_model.update(params)
|
||||
return mlx_model
|
||||
|
||||
@ -190,5 +194,6 @@ def torch_to_mlx(
|
||||
def load_model(
|
||||
name: str,
|
||||
download_root: str = None,
|
||||
dtype : mx.Dtype = mx.float32,
|
||||
) -> whisper.Whisper:
|
||||
return torch_to_mlx(load_torch_model(name, download_root))
|
||||
return torch_to_mlx(load_torch_model(name, download_root), dtype)
|
||||
|
@ -109,6 +109,7 @@ LANGUAGES = {
|
||||
"ba": "bashkir",
|
||||
"jw": "javanese",
|
||||
"su": "sundanese",
|
||||
"yue": "cantonese",
|
||||
}
|
||||
|
||||
# language code lookup by name, with a few language aliases
|
||||
@ -125,6 +126,7 @@ TO_LANGUAGE_CODE = {
|
||||
"moldovan": "ro",
|
||||
"sinhalese": "si",
|
||||
"castilian": "es",
|
||||
"mandarin": "zh",
|
||||
}
|
||||
|
||||
|
||||
@ -133,6 +135,7 @@ class Tokenizer:
|
||||
"""A thin wrapper around `tiktoken` providing quick access to special tokens"""
|
||||
|
||||
encoding: tiktoken.Encoding
|
||||
num_languages: int
|
||||
language: Optional[str] = None
|
||||
task: Optional[str] = None
|
||||
sot_sequence: Tuple[int] = ()
|
||||
@ -147,7 +150,7 @@ class Tokenizer:
|
||||
translate: int = self.special_tokens["<|translate|>"]
|
||||
transcribe: int = self.special_tokens["<|transcribe|>"]
|
||||
|
||||
langs = tuple(LANGUAGES.keys())
|
||||
langs = tuple(LANGUAGES.keys())[: self.num_languages]
|
||||
sot_sequence = [sot]
|
||||
if self.language is not None:
|
||||
sot_sequence.append(sot + 1 + langs.index(self.language))
|
||||
@ -213,10 +216,13 @@ class Tokenizer:
|
||||
if self.language is None:
|
||||
raise ValueError("This tokenizer does not have language token configured")
|
||||
|
||||
if token := self.special_tokens.get(f"<|{self.language}|>", None):
|
||||
return self.to_language_token(self.language)
|
||||
|
||||
def to_language_token(self, language):
|
||||
if token := self.special_tokens.get(f"<|{language}|>", None):
|
||||
return token
|
||||
|
||||
raise KeyError(f"Language {self.language} not found in tokenizer.")
|
||||
raise KeyError(f"Language {language} not found in tokenizer.")
|
||||
|
||||
@cached_property
|
||||
def all_language_tokens(self) -> Tuple[int]:
|
||||
@ -224,7 +230,7 @@ class Tokenizer:
|
||||
for token, token_id in self.special_tokens.items():
|
||||
if token.strip("<|>") in LANGUAGES:
|
||||
result.append(token_id)
|
||||
return tuple(result)
|
||||
return tuple(result)[: self.num_languages]
|
||||
|
||||
@cached_property
|
||||
def all_language_codes(self) -> Tuple[str]:
|
||||
@ -271,7 +277,7 @@ class Tokenizer:
|
||||
return tuple(sorted(result))
|
||||
|
||||
def split_to_word_tokens(self, tokens: List[int]):
|
||||
if self.language in {"zh", "ja", "th", "lo", "my"}:
|
||||
if self.language in {"zh", "ja", "th", "lo", "my", "yue"}:
|
||||
# These languages don't typically use spaces, so it is difficult to split words
|
||||
# without morpheme analysis. Here, we instead split words at any
|
||||
# position where the tokens are decoded as valid unicode points
|
||||
@ -324,7 +330,7 @@ class Tokenizer:
|
||||
|
||||
|
||||
@lru_cache(maxsize=None)
|
||||
def get_encoding(name: str = "gpt2"):
|
||||
def get_encoding(name: str = "gpt2", num_languages: int = 99):
|
||||
vocab_path = os.path.join(os.path.dirname(__file__), "assets", f"{name}.tiktoken")
|
||||
with open(vocab_path) as fid:
|
||||
ranks = {
|
||||
@ -337,7 +343,7 @@ def get_encoding(name: str = "gpt2"):
|
||||
specials = [
|
||||
"<|endoftext|>",
|
||||
"<|startoftranscript|>",
|
||||
*[f"<|{lang}|>" for lang in LANGUAGES.keys()],
|
||||
*[f"<|{lang}|>" for lang in list(LANGUAGES.keys())[:num_languages]],
|
||||
"<|translate|>",
|
||||
"<|transcribe|>",
|
||||
"<|startoflm|>",
|
||||
@ -364,6 +370,7 @@ def get_encoding(name: str = "gpt2"):
|
||||
def get_tokenizer(
|
||||
multilingual: bool,
|
||||
*,
|
||||
num_languages: int = 99,
|
||||
language: Optional[str] = None,
|
||||
task: Optional[str] = None, # Literal["transcribe", "translate", None]
|
||||
) -> Tokenizer:
|
||||
@ -384,6 +391,8 @@ def get_tokenizer(
|
||||
language = None
|
||||
task = None
|
||||
|
||||
encoding = get_encoding(name=encoding_name)
|
||||
encoding = get_encoding(name=encoding_name, num_languages=num_languages)
|
||||
|
||||
return Tokenizer(encoding=encoding, language=language, task=task)
|
||||
return Tokenizer(
|
||||
encoding=encoding, num_languages=num_languages, language=language, task=task
|
||||
)
|
||||
|
@ -234,7 +234,8 @@ class Whisper(nn.Module):
|
||||
self.dims.n_text_head,
|
||||
self.dims.n_text_layer,
|
||||
)
|
||||
# use the last half layers for alignment by default; see `set_alignment_heads()` below
|
||||
# use the last half among the decoder layers for time alignment by default;
|
||||
# to use a specific set of heads, see `set_alignment_heads()` below.
|
||||
all_heads = torch.zeros(
|
||||
self.dims.n_text_layer, self.dims.n_text_head, dtype=torch.bool
|
||||
)
|
||||
@ -267,7 +268,11 @@ class Whisper(nn.Module):
|
||||
|
||||
@property
|
||||
def is_multilingual(self):
|
||||
return self.dims.n_vocab == 51865
|
||||
return self.dims.n_vocab >= 51865
|
||||
|
||||
@property
|
||||
def num_languages(self):
|
||||
return self.dims.n_vocab - 51765 - int(self.is_multilingual)
|
||||
|
||||
def install_kv_cache_hooks(self, cache: Optional[dict] = None):
|
||||
"""
|
||||
|
@ -43,9 +43,9 @@ class ModelHolder:
|
||||
model_name = None
|
||||
|
||||
@classmethod
|
||||
def get_model(cls, model: str):
|
||||
def get_model(cls, model: str, dtype : mx.Dtype):
|
||||
if cls.model is None or model != cls.model_name:
|
||||
cls.model = load_model(model)
|
||||
cls.model = load_model(model, dtype=dtype)
|
||||
cls.model_name = model
|
||||
return cls.model
|
||||
|
||||
@ -114,12 +114,11 @@ def transcribe(
|
||||
the spoken language ("language"), which is detected when `decode_options["language"]` is None.
|
||||
"""
|
||||
|
||||
model = ModelHolder.get_model(model)
|
||||
|
||||
dtype = mx.float16 if decode_options.get("fp16", False) else mx.float32
|
||||
dtype = mx.float16 if decode_options.get("fp16", True) else mx.float32
|
||||
model = ModelHolder.get_model(model, dtype)
|
||||
|
||||
# Pad 30-seconds of silence to the input audio, for slicing
|
||||
mel = log_mel_spectrogram(audio, padding=N_SAMPLES)
|
||||
mel = log_mel_spectrogram(audio, n_mels=model.dims.n_mels, padding=N_SAMPLES)
|
||||
content_frames = mel.shape[-2] - N_FRAMES
|
||||
|
||||
if verbose:
|
||||
@ -150,7 +149,12 @@ def transcribe(
|
||||
|
||||
language: str = decode_options["language"]
|
||||
task: str = decode_options.get("task", "transcribe")
|
||||
tokenizer = get_tokenizer(model.is_multilingual, language=language, task=task)
|
||||
tokenizer = get_tokenizer(
|
||||
model.is_multilingual,
|
||||
num_languages=model.num_languages,
|
||||
language=language,
|
||||
task=task,
|
||||
)
|
||||
|
||||
def decode_with_fallback(segment: mx.array) -> DecodingResult:
|
||||
temperatures = (
|
||||
|
@ -37,6 +37,10 @@ def sinusoids(length, channels, max_timescale=10000):
|
||||
scaled_time = mx.arange(length)[:, None] * inv_timescales[None, :]
|
||||
return mx.concatenate([mx.sin(scaled_time), mx.cos(scaled_time)], axis=1)
|
||||
|
||||
class LayerNorm(nn.LayerNorm):
|
||||
def __call__(self, x: mx.array) -> mx.array:
|
||||
return super().__call__(x.astype(mx.float32)).astype(x.dtype)
|
||||
|
||||
|
||||
class MultiHeadAttention(nn.Module):
|
||||
def __init__(self, n_state: int, n_head: int):
|
||||
@ -94,17 +98,17 @@ class ResidualAttentionBlock(nn.Module):
|
||||
super().__init__()
|
||||
|
||||
self.attn = MultiHeadAttention(n_state, n_head)
|
||||
self.attn_ln = nn.LayerNorm(n_state)
|
||||
self.attn_ln = LayerNorm(n_state)
|
||||
|
||||
self.cross_attn = (
|
||||
MultiHeadAttention(n_state, n_head) if cross_attention else None
|
||||
)
|
||||
self.cross_attn_ln = nn.LayerNorm(n_state) if cross_attention else None
|
||||
self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None
|
||||
|
||||
n_mlp = n_state * 4
|
||||
self.mlp1 = nn.Linear(n_state, n_mlp)
|
||||
self.mlp2 = nn.Linear(n_mlp, n_state)
|
||||
self.mlp_ln = nn.LayerNorm(n_state)
|
||||
self.mlp_ln = LayerNorm(n_state)
|
||||
|
||||
def __call__(self, x, xa=None, mask=None, kv_cache=None):
|
||||
kv, cross_kv = kv_cache if kv_cache else (None, None)
|
||||
@ -119,15 +123,15 @@ class ResidualAttentionBlock(nn.Module):
|
||||
|
||||
class AudioEncoder(nn.Module):
|
||||
def __init__(
|
||||
self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int
|
||||
self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int, dtype: mx.Dtype = mx.float16,
|
||||
):
|
||||
super().__init__()
|
||||
self.conv1 = nn.Conv1d(n_mels, n_state, kernel_size=3, padding=1)
|
||||
self.conv2 = nn.Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1)
|
||||
self._positional_embedding = sinusoids(n_ctx, n_state)
|
||||
self._positional_embedding = sinusoids(n_ctx, n_state).astype(dtype)
|
||||
|
||||
self.blocks = [ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)]
|
||||
self.ln_post = nn.LayerNorm(n_state)
|
||||
self.ln_post = LayerNorm(n_state)
|
||||
|
||||
def __call__(self, x):
|
||||
x = nn.gelu(self.conv1(x))
|
||||
@ -144,7 +148,7 @@ class AudioEncoder(nn.Module):
|
||||
|
||||
class TextDecoder(nn.Module):
|
||||
def __init__(
|
||||
self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int
|
||||
self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int, dtype: mx.Dtype = mx.float16,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@ -155,8 +159,8 @@ class TextDecoder(nn.Module):
|
||||
ResidualAttentionBlock(n_state, n_head, cross_attention=True)
|
||||
for _ in range(n_layer)
|
||||
]
|
||||
self.ln = nn.LayerNorm(n_state)
|
||||
self._mask = nn.MultiHeadAttention.create_additive_causal_mask(n_ctx)
|
||||
self.ln = LayerNorm(n_state)
|
||||
self._mask = nn.MultiHeadAttention.create_additive_causal_mask(n_ctx).astype(dtype)
|
||||
|
||||
def __call__(self, x, xa, kv_cache=None):
|
||||
"""
|
||||
@ -181,7 +185,7 @@ class TextDecoder(nn.Module):
|
||||
|
||||
|
||||
class Whisper(nn.Module):
|
||||
def __init__(self, dims: ModelDimensions):
|
||||
def __init__(self, dims: ModelDimensions, dtype: mx.Dtype = mx.float16):
|
||||
super().__init__()
|
||||
self.dims = dims
|
||||
self.encoder = AudioEncoder(
|
||||
@ -190,6 +194,7 @@ class Whisper(nn.Module):
|
||||
self.dims.n_audio_state,
|
||||
self.dims.n_audio_head,
|
||||
self.dims.n_audio_layer,
|
||||
dtype,
|
||||
)
|
||||
self.decoder = TextDecoder(
|
||||
self.dims.n_vocab,
|
||||
@ -197,6 +202,7 @@ class Whisper(nn.Module):
|
||||
self.dims.n_text_state,
|
||||
self.dims.n_text_head,
|
||||
self.dims.n_text_layer,
|
||||
dtype,
|
||||
)
|
||||
|
||||
def embed_audio(self, mel):
|
||||
@ -210,7 +216,11 @@ class Whisper(nn.Module):
|
||||
|
||||
@property
|
||||
def is_multilingual(self):
|
||||
return self.dims.n_vocab == 51865
|
||||
return self.dims.n_vocab >= 51865
|
||||
|
||||
@property
|
||||
def num_languages(self):
|
||||
return self.dims.n_vocab - 51765 - int(self.is_multilingual)
|
||||
|
||||
detect_language = detect_language_function
|
||||
decode = decode_function
|
||||
|
Loading…
Reference in New Issue
Block a user