rollback OTHER changes (oopsy)

This commit is contained in:
N8 2024-12-14 15:23:19 -05:00
parent 75fbb7ed34
commit 4823f279d5
2 changed files with 0 additions and 233 deletions

View File

@ -263,13 +263,6 @@ class KVCache(_BaseCache):
n = min(self.offset, n)
self.offset -= n
return n
def trim_from_behind(self, n):
old_size = self.keys.shape[2]
self.keys = self.keys[..., -n:, :]
self.values = self.values[..., -n:, :]
new_size = self.keys.shape[2]
trimmed = old_size - new_size
self.offset -= trimmed
def to_quantized(self, group_size: int = 64, bits: int = 4) -> QuantizedKVCache:
quant_cache = QuantizedKVCache(group_size=group_size, bits=bits)

View File

@ -404,7 +404,6 @@ def generate(
prompt: str,
verbose: bool = False,
formatter: Optional[Callable] = None,
stop_strings: Optional[List[str]] = None,
**kwargs,
) -> str:
"""
@ -433,8 +432,6 @@ def generate(
if verbose:
print(response.text, end="", flush=True)
text += response.text
if stop_strings is not None and any(s in text for s in stop_strings):
break
if verbose:
print()
@ -869,226 +866,3 @@ def convert(
if upload_repo is not None:
upload_to_hub(mlx_path, upload_repo, hf_path)
from tqdm import tqdm
def generate_batched_response(
model: nn.Module,
tokenizer: Union[PreTrainedTokenizer, TokenizerWrapper],
prompt: Union[str, mx.array, List[int]],
batch_size: int,
max_tokens: int = 256,
sampler: Optional[Callable[[mx.array], mx.array]] = None,
logits_processors: Optional[List[Callable[[mx.array, mx.array], mx.array]]] = None,
max_kv_size: Optional[int] = None,
prompt_cache: Optional[List[Any]] = None,
prefill_step_size: int = 512,
kv_bits: Optional[int] = None,
kv_group_size: int = 64,
quantized_kv_start: int = 0,
prompt_progress_callback: Optional[Callable[[int, int], None]] = None,
temp: Optional[float] = None,
repetition_penalty: Optional[float] = None,
repetition_context_size: Optional[int] = None,
top_p: Optional[float] = None,
min_p: Optional[float] = None,
min_tokens_to_keep: Optional[int] = None,
verbose: bool = False,
) -> List[str]:
"""
Generate multiple responses to the same prompt in parallel and return only the generated
sequences (excluding the prompt), stopping at the first EOS token.
Args:
model (nn.Module): The language model.
tokenizer (PreTrainedTokenizer or TokenizerWrapper): The tokenizer.
prompt (Union[str, mx.array, List[int]]): The input prompt.
batch_size (int): Number of responses to generate in parallel.
max_tokens (int): Maximum number of generated tokens per sequence.
sampler (Callable): Sampler function.
logits_processors (List[Callable]): List of logits processors.
max_kv_size (int): Maximum KV cache size.
prompt_cache (List[Any]): Precomputed prompt cache.
prefill_step_size (int): Step size for prompt processing.
kv_bits (int): Bits for KV cache quantization.
kv_group_size (int): Group size for KV quantization.
quantized_kv_start (int): Step to begin quantizing KV.
prompt_progress_callback (Callable): Callback for prompt progress.
temp (float): Temperature for sampling (deprecated, pass to sampler).
repetition_penalty (float): Repetition penalty (deprecated, use logits_processors).
repetition_context_size (int): Context size for repetition.
top_p (float): Top-p sampling (deprecated, pass to sampler).
min_p (float): Minimum p sampling (deprecated, pass to sampler).
min_tokens_to_keep (int): Minimum number of tokens to keep.
verbose (bool): If True, show a progress bar for token generation.
Returns:
List[str]: A list of decoded response strings for each batch element, excluding the prompt
and stopping at the first EOS token.
"""
if not isinstance(tokenizer, TokenizerWrapper):
tokenizer = TokenizerWrapper(tokenizer)
# Convert prompt to tokens if necessary
if not isinstance(prompt, mx.array):
prompt = mx.array(
prompt if isinstance(prompt, list) else tokenizer.encode(prompt)
)
# Expand prompt to batch
prompt_length = prompt.size
prompt = mx.expand_dims(prompt, 0) # (1, prompt_length)
prompt = mx.repeat(prompt, batch_size, axis=0) # (B, prompt_length)
B = batch_size
if prompt_progress_callback is None:
prompt_progress_callback = lambda *_: None
if temp is not None or top_p is not None or min_tokens_to_keep is not None:
print(
"[Warning] Specifying sampling arguments directly is deprecated. "
"Pass in a `sampler` if needed."
)
if repetition_penalty is not None:
print(
"[Warning] Specifying `repetition_penalty` is deprecated. "
"Use `logits_processors` instead."
)
sampler = sampler or make_sampler(
temp or 0.0, top_p or 0.0, min_p or 0.0, min_tokens_to_keep or 1
)
logits_processors = logits_processors or make_logits_processors(
None, repetition_penalty, repetition_context_size or 20
)
# Create or verify prompt cache
if prompt_cache is None:
prompt_cache = cache.make_prompt_cache(model, max_kv_size)
elif len(prompt_cache) != len(model.layers):
raise ValueError("Wrong number of layers in the prompt cache.")
# Process the prompt to fill the cache in increments
total_prompt_tokens = prompt_length
prompt_processed_tokens = 0
remaining_prompt = prompt
tic = time.perf_counter()
with mx.stream(generation_stream):
while remaining_prompt.shape[1] > prefill_step_size:
model(remaining_prompt[:, :prefill_step_size], cache=prompt_cache)
mx.eval([c.state for c in prompt_cache])
prompt_progress_callback(prompt_processed_tokens, total_prompt_tokens)
prompt_processed_tokens += prefill_step_size
remaining_prompt = remaining_prompt[:, prefill_step_size:]
mx.metal.clear_cache()
# Process any remaining prompt tokens
if remaining_prompt.shape[1] > 0:
model(remaining_prompt, cache=prompt_cache)
mx.eval([c.state for c in prompt_cache])
prompt_progress_callback(total_prompt_tokens, total_prompt_tokens)
prompt_time = time.perf_counter() - tic
prompt_tps = (total_prompt_tokens * B) / prompt_time
# Initialization for generation
tokens = prompt
finished = mx.zeros((B,), dtype=tokens.dtype)
generation_count = 0
eos_ids = tokenizer.eos_token_ids
# Setup progress bar if verbose
pbar = None
if verbose:
if max_tokens >= 0:
pbar = tqdm(total=max_tokens, desc="Generating tokens", ncols=80)
else:
# If we don't have a max_tokens limit, no total is known.
# We'll just display a progress bar that counts up.
pbar = tqdm(desc="Generating tokens", ncols=80)
tic = time.perf_counter()
while True:
if (max_tokens >= 0) and (generation_count >= max_tokens):
break
# If all sequences finished, break
sum_finished = mx.sum(finished)
mx.eval(sum_finished)
if sum_finished.item() == B:
break
# Prepare last token
next_input = tokens[:, -1:] # (B,1)
with mx.stream(generation_stream):
logits = model(next_input, cache=prompt_cache)
# logits: (B, 1, vocab)
logits = logits[:, -1, :] # (B, vocab)
# Apply logits processors
if logits_processors:
for processor in logits_processors:
logits = processor(tokens, logits)
maybe_quantize_kv_cache(prompt_cache, quantized_kv_start, kv_group_size, kv_bits)
logprobs = logits - mx.logsumexp(logits, axis=-1, keepdims=True) # (B,vocab)
sampled_tokens = sampler(logprobs) # (B,)
mx.async_eval(sampled_tokens, logprobs)
# Check EOS
is_eos = mx.zeros_like(sampled_tokens).astype(tokens.dtype)
for eid in eos_ids:
diff = sampled_tokens - eid
sq = diff * diff
val = 1.0 / (sq + 1.0)
mask = val.astype(tokens.dtype)
is_eos = is_eos + mask
ones = mx.ones_like(is_eos)
is_eos = mx.minimum(is_eos, ones)
finished = mx.maximum(finished, is_eos)
sampled_tokens = sampled_tokens[:, None] # (B,1)
tokens = mx.concatenate([tokens, sampled_tokens], axis=1)
generation_count += 1
if pbar is not None:
pbar.update(1)
if (generation_count % 256) == 0:
mx.metal.clear_cache()
if pbar is not None:
pbar.close()
generation_time = time.perf_counter() - tic
generation_tps = (generation_count * B) / generation_time if generation_count > 0 else 0.0
peak_memory = mx.metal.get_peak_memory() / 1e9
results = []
for i in range(B):
seq = tokens[i][prompt_length:].tolist() # Exclude the prompt
# Find the first EOS token
eos_pos = None
for idx, t in enumerate(seq):
if t in eos_ids:
eos_pos = idx
break
# Slice up to EOS if found
if eos_pos is not None:
seq = seq[:eos_pos]
text = tokenizer.decode(seq)
results.append(text)
if verbose:
print("=" * 10)
print(f"Prompt: {total_prompt_tokens} tokens * {B} sequences, {prompt_tps:.3f} tps")
print(
f"Generation: {generation_count} tokens * {B} sequences, "
f"{generation_tps:.3f} tps"
)
print(f"Peak memory: {peak_memory:.3f} GB")
return results