mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00
feat(clip): add linear probe evaluation script (#960)
This commit is contained in:
parent
9000e280ae
commit
4971462bf0
56
clip/linear_probe.py
Normal file
56
clip/linear_probe.py
Normal file
@ -0,0 +1,56 @@
|
|||||||
|
# Mirror of the Linear Probe Evaluation Script
|
||||||
|
# from the official CLIP Repository.
|
||||||
|
|
||||||
|
import mlx.core as mx
|
||||||
|
import numpy as np
|
||||||
|
from image_processor import CLIPImageProcessor
|
||||||
|
from mlx.data.datasets import load_cifar10
|
||||||
|
from model import CLIPModel
|
||||||
|
from PIL import Image
|
||||||
|
from sklearn.linear_model import LogisticRegression
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
|
||||||
|
def get_cifar10(batch_size, root=None):
|
||||||
|
tr = load_cifar10(root=root).batch(batch_size)
|
||||||
|
test = load_cifar10(root=root, train=False).batch(batch_size)
|
||||||
|
|
||||||
|
return tr, test
|
||||||
|
|
||||||
|
|
||||||
|
def get_features(model, image_proc, iter):
|
||||||
|
all_features = []
|
||||||
|
all_labels = []
|
||||||
|
|
||||||
|
for batch in tqdm(iter):
|
||||||
|
image, label = batch["image"], batch["label"]
|
||||||
|
x = image_proc([Image.fromarray(im) for im in image])
|
||||||
|
y = mx.array(label)
|
||||||
|
|
||||||
|
image_embeds = model.get_image_features(x)
|
||||||
|
mx.eval(image_embeds)
|
||||||
|
|
||||||
|
all_features.append(image_embeds)
|
||||||
|
all_labels.append(y)
|
||||||
|
|
||||||
|
return mx.concatenate(all_features), mx.concatenate(all_labels)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
model = CLIPModel.from_pretrained("mlx_model")
|
||||||
|
image_proc = CLIPImageProcessor.from_pretrained("mlx_model")
|
||||||
|
|
||||||
|
train_iter, test_iter = get_cifar10(batch_size=256)
|
||||||
|
train_features, train_labels = get_features(model, image_proc, train_iter)
|
||||||
|
test_features, test_labels = get_features(model, image_proc, test_iter)
|
||||||
|
|
||||||
|
# Perform logistic regression
|
||||||
|
# NOTE: The value of C should be determined via a hyperparameter sweep
|
||||||
|
# using a validation split
|
||||||
|
classifier = LogisticRegression(random_state=0, C=0.316, max_iter=1000, verbose=1)
|
||||||
|
classifier.fit(train_features, train_labels)
|
||||||
|
|
||||||
|
# Evaluate using the logistic regression classifier
|
||||||
|
predictions = classifier.predict(test_features)
|
||||||
|
accuracy = (test_labels.squeeze() == predictions).mean().item() * 100
|
||||||
|
print(f"Accuracy = {accuracy:.3f}")
|
@ -1,4 +1,5 @@
|
|||||||
mlx
|
mlx
|
||||||
|
mlx-data
|
||||||
numpy
|
numpy
|
||||||
transformers
|
transformers
|
||||||
torch
|
torch
|
||||||
|
Loading…
Reference in New Issue
Block a user