mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-26 02:33:23 +08:00
Create mamba2.py
This commit is contained in:
parent
0866e23a67
commit
49b9fc1a4c
264
llms/mlx_lm/models/mamba2.py
Normal file
264
llms/mlx_lm/models/mamba2.py
Normal file
@ -0,0 +1,264 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
from .base import BaseModelArgs
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArgs(BaseModelArgs):
|
||||
model_type: str = "mamba2"
|
||||
num_heads: int = 128
|
||||
head_dim: int = 64
|
||||
vocab_size: int = 32768
|
||||
hidden_size: int = 4096
|
||||
state_size: int = 128
|
||||
num_hidden_layers: int = 64
|
||||
layer_norm_epsilon: float = 1e-5
|
||||
pad_token_id: int = 1
|
||||
bos_token_id: int = 0
|
||||
eos_token_id: int = 2
|
||||
expand: int = 2
|
||||
conv_kernel: int = 4
|
||||
n_groups: int = 8
|
||||
use_bias: bool = False
|
||||
use_conv_bias: bool = True
|
||||
hidden_act: str = "silu"
|
||||
initializer_range: float = 0.1
|
||||
residual_in_fp32: bool = True
|
||||
time_step_rank: Union[int, str] = "auto"
|
||||
time_step_min: float = 0.001
|
||||
time_step_max: float = 0.1
|
||||
time_step_floor: float = 1e-4
|
||||
time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf")))
|
||||
rescale_prenorm_residual: bool = False
|
||||
use_cache: bool = True
|
||||
rms_norm: bool = True
|
||||
chunk_size: int = 256
|
||||
tie_word_embeddings: bool = False
|
||||
|
||||
def __post_init__(self):
|
||||
if not hasattr(self, "intermediate_size"):
|
||||
self.intermediate_size = int(self.expand * self.hidden_size)
|
||||
if not hasattr(self, "head_dim"):
|
||||
self.head_dim = self.hidden_size // self.num_heads
|
||||
if self.time_step_rank == "auto":
|
||||
self.time_step_rank = math.ceil(self.hidden_size / 16)
|
||||
|
||||
|
||||
class Mamba2Cache:
|
||||
def __init__(self, num_layers):
|
||||
self.cache = [[None, None] for _ in range(num_layers)]
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return self.cache[idx]
|
||||
|
||||
def __setitem__(self, idx, value):
|
||||
self.cache[idx] = value
|
||||
|
||||
|
||||
class MambaRMSNormGated(nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
super().__init__()
|
||||
self.weight = mx.ones((hidden_size,))
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def __call__(self, hidden_states, gate=None):
|
||||
if gate is not None:
|
||||
hidden_states = hidden_states * nn.silu(gate)
|
||||
variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True)
|
||||
hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon)
|
||||
return self.weight * hidden_states
|
||||
|
||||
|
||||
class Mamba2Mixer(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.hidden_size = args.hidden_size
|
||||
self.intermediate_size = args.intermediate_size
|
||||
self.conv_kernel_size = args.conv_kernel
|
||||
self.state_size = args.state_size
|
||||
self.num_heads = args.num_heads
|
||||
self.head_dim = args.head_dim
|
||||
self.n_groups = args.n_groups
|
||||
self.time_step_rank = args.time_step_rank
|
||||
|
||||
projection_size = self.intermediate_size + self.intermediate_size + 2 * self.n_groups * self.state_size + self.num_heads
|
||||
self.in_proj = nn.Linear(
|
||||
self.hidden_size,
|
||||
projection_size,
|
||||
bias=args.use_bias
|
||||
)
|
||||
|
||||
self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.state_size
|
||||
self.conv1d = nn.Conv1d(
|
||||
in_channels=self.conv_dim,
|
||||
out_channels=self.conv_dim,
|
||||
bias=args.use_conv_bias,
|
||||
kernel_size=args.conv_kernel,
|
||||
groups=self.conv_dim,
|
||||
padding=args.conv_kernel - 1,
|
||||
)
|
||||
|
||||
self.act = nn.SiLU()
|
||||
self.dt_bias = mx.ones((self.num_heads,))
|
||||
self.A_log = mx.log(mx.arange(1, self.num_heads + 1, dtype=mx.float32))
|
||||
self.D = mx.ones((self.num_heads,))
|
||||
|
||||
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=args.use_bias)
|
||||
self.norm = MambaRMSNormGated(self.intermediate_size, eps=args.layer_norm_epsilon)
|
||||
|
||||
def ssm_step(self, x, dt, state):
|
||||
A = -mx.exp(self.A_log)
|
||||
D = self.D
|
||||
|
||||
deltaBC = self.in_proj(x)
|
||||
gate, conv_state, time_step = mx.split(
|
||||
deltaBC,
|
||||
[self.intermediate_size, self.intermediate_size + 2 * self.n_groups * self.state_size],
|
||||
axis=-1
|
||||
)
|
||||
|
||||
conv_state = conv_state.transpose(0, 2, 1)
|
||||
conv_out = self.conv1d(conv_state)
|
||||
conv_out = conv_out.transpose(0, 2, 1)
|
||||
conv_out = self.act(conv_out)
|
||||
|
||||
x_and_conv_out, B, C = mx.split(
|
||||
conv_out,
|
||||
[self.intermediate_size, self.n_groups * self.state_size],
|
||||
axis=-1
|
||||
)
|
||||
|
||||
dt = nn.softplus(time_step + self.dt_bias)
|
||||
dt = mx.clip(dt, self.args.time_step_min, self.args.time_step_max)
|
||||
|
||||
B = B.reshape(-1, self.num_heads, self.head_dim, self.state_size)
|
||||
C = C.reshape(-1, self.num_heads, self.head_dim, self.state_size)
|
||||
|
||||
dA = mx.exp(dt[:, :, None, None] * A[None, :, None, None])
|
||||
dB = dt[:, :, None, None] * B
|
||||
|
||||
new_state = state * dA + x_and_conv_out[:, :, None, None] * dB
|
||||
y = mx.sum(new_state * C, axis=-1)
|
||||
y = y + D[None, :, None] * x_and_conv_out
|
||||
|
||||
y = self.norm(y.reshape(-1, self.intermediate_size), gate)
|
||||
output = self.out_proj(y)
|
||||
|
||||
return output, new_state
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
x: mx.array,
|
||||
cache = None
|
||||
):
|
||||
B, L, _ = x.shape
|
||||
|
||||
if cache[0] is not None: # Using cached state
|
||||
conv_state, ssm_state = cache
|
||||
x = x[:, -1:]
|
||||
output, new_ssm_state = self.ssm_step(x, None, ssm_state)
|
||||
cache[1] = new_ssm_state # Update SSM state in cache
|
||||
else:
|
||||
conv_state, ssm_state = None, None
|
||||
outputs = []
|
||||
for t in range(L):
|
||||
x = x[:, t:t+1]
|
||||
output, ssm_state = self.ssm_step(x, None, ssm_state)
|
||||
outputs.append(output)
|
||||
output = mx.concatenate(outputs, axis=1)
|
||||
cache[1] = ssm_state # Store final SSM state in cache
|
||||
|
||||
# Update conv state in cache
|
||||
new_conv_state = x[:, -self.conv_kernel_size:]
|
||||
cache[0] = new_conv_state
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class Mamba2Block(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.residual_in_fp32 = args.residual_in_fp32
|
||||
self.norm = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
||||
self.mixer = Mamba2Mixer(args)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache=None,
|
||||
):
|
||||
h = self.mixer(self.norm(inputs), cache_params=cache)
|
||||
r = inputs + h
|
||||
return r
|
||||
|
||||
|
||||
class Mamba2(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
|
||||
self.layers = [Mamba2Block(args) for idx in range(args.num_hidden_layers)]
|
||||
self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache=None
|
||||
):
|
||||
hidden_states = self.embeddings(inputs)
|
||||
|
||||
if cache is None:
|
||||
cache = Mamba2Cache(len(self.layers))
|
||||
|
||||
for i, layer in enumerate(self.layers):
|
||||
hidden_states = layer(hidden_states, cache[i])
|
||||
|
||||
hidden_states = self.norm_f(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self, args: ModelArgs):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.model_type = args.model_type
|
||||
self.backbone = Mamba2(args)
|
||||
if not args.tie_word_embeddings:
|
||||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
inputs: mx.array,
|
||||
cache=None
|
||||
):
|
||||
B, T = inputs.shape
|
||||
|
||||
x = self.backbone(inputs, cache)
|
||||
|
||||
if self.args.tie_word_embeddings:
|
||||
logits = self.backbone.embeddings.as_linear(x)
|
||||
else:
|
||||
logits = self.lm_head(x)
|
||||
return logits
|
||||
|
||||
def sanitize_mabey(self, weights):
|
||||
for k, v in weights.items():
|
||||
if "conv1d.weight" in k and v.ndim == 3:
|
||||
weights[k] = v.moveaxis(2, 1)
|
||||
return weights
|
||||
|
||||
def make_cache(self, batch_size: int = 1):
|
||||
return Mamba2Cache(len(self.backbone.layers))
|
||||
|
||||
@property
|
||||
def layers(self):
|
||||
return self.backbone.layers
|
Loading…
Reference in New Issue
Block a user